I’m building a NER model with a custom pre-processing layer, where this layer converts the input string into a sequence of ints (each int mapped to a word of the vocabulary), so that I could then deploy the model on a server and call the predict method through APIs.
However I’m having some problems with the input passed to the custom layer:
- by running
predict
right aftercompile
, it works only ifrun_eagerly=True
was passed to the compile. - if the model is exported and then loaded, the predict method raises an error even if
run_eagerly=True
was used in the compilation of the model.
Full code below; colab notebook here.
Sample data
import pandas as pd
import numpy as np
import io, os, traceback
data = '''Sentence #,Word,Tag
Sentence: 0,It,O
Sentence: 0,was,O
Sentence: 0,23/10/1991,B-dat
Sentence: 0,when,O
Sentence: 0,the,O
Sentence: 0,life,O
Sentence: 0,of,O
Sentence: 0,James,B-nam
Sentence: 0,Parker,I-nam
Sentence: 0,suddenly,O
Sentence: 0,changed,O
Sentence: 1,George,B-nam
Sentence: 1,is,O
Sentence: 1,going,O
Sentence: 1,to,O
Sentence: 1,buy,O
Sentence: 1,a,O
Sentence: 1,gift,O
Sentence: 1,for,O
Sentence: 1,his,O
Sentence: 1,dad,O
Sentence: 1,Jim,B-nam
Sentence: 1,since,O
Sentence: 1,on,O
Sentence: 1,11/11/2021,B-dat
Sentence: 1,its,O
Sentence: 1,his,O
Sentence: 1,birthday,O
Sentence: 2,There,O
Sentence: 2,is,O
Sentence: 2,no,O
Sentence: 2,evidence,O
Sentence: 2,that,O
Sentence: 2,Alice,B-nam
Sentence: 2,Jackson,I-nam
Sentence: 2,was,O
Sentence: 2,at,O
Sentence: 2,home,O
Sentence: 2,the,O
Sentence: 2,night,O
Sentence: 2,of,O
Sentence: 2,10/10/2010,B-dat'''
data = pd.read_csv(io.StringIO(data), sep=',')
Create vocabulary
padding_value = ""
vocab_token = list(set(data['Word'])) + [padding_value]
idx2token = {idx:tok for idx, tok in enumerate(vocab_token)}
token2idx = {tok:idx for idx, tok in enumerate(vocab_token)}
vocab_tag = list(set(data['Tag']))
idx2tag = {idx:tok for idx, tok in enumerate(vocab_tag)}
tag2idx = {tok:idx for idx, tok in enumerate(vocab_tag)}
data['Word_idx'] = data['Word'].map(token2idx)
data['Tag_idx'] = data['Tag'].map(tag2idx)
n_words = len(vocab_token)
n_tags = len(vocab_tag)
n_sentences = len(data['Sentence #'].unique())
max_len = max(data['Sentence #'].value_counts())
Padding
from sklearn.model_selection import train_test_split
from keras_preprocessing.sequence import pad_sequences
import tensorflow as tf
data_group = data.groupby(['Sentence #'], as_index=False)[['Word', 'Tag', 'Word_idx', 'Tag_idx']].agg(lambda x: list(x))
tokens = data_group['Word_idx'].tolist()
pad_tokens = pad_sequences(tokens, maxlen=max_len, dtype='int32', padding='post', value=token2idx[padding_value])
tags = data_group['Tag_idx'].tolist()
pad_tags = pad_sequences(tags, maxlen=max_len, dtype='int32', padding='post', value=tag2idx["O"])
pad_tags = [tf.keras.utils.to_categorical(i, num_classes=n_tags) for i in pad_tags]
Model definition and fit
import tensorflow as tf
from tensorflow.keras import Sequential, Input
from tensorflow.keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional
output_dim = 32
model = Sequential()
model.add(Embedding(input_dim=n_words + 1, output_dim=output_dim, input_length=max_len))
model.add(Bidirectional(LSTM(units=output_dim, return_sequences=True, dropout=0.2, recurrent_dropout=0.2), merge_mode = 'concat'))
model.add(TimeDistributed(Dense(n_tags, activation="softmax")))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(pad_tokens, np.array(pad_tags), batch_size=16, epochs=1)
Pre-processing layer
@tf.keras.utils.register_keras_serializable(name='pre_processing_layer')
class InputProcessingLayer(tf.keras.layers.Layer):
def __init__(self, vocab, **kwargs):
super(InputProcessingLayer, self).__init__(**kwargs)
self.vocab = vocab
def call(self, input_str, training=False):
# a print useful for debugging
print('-->', input_str, type(input_str))
# from tf.Tensor([b'...']) to tf.Tensor(b'...')
input_str = input_str[0]
try:
# lowers the input string and splits it on whitespaces
tokens = self.vocab(tf.strings.split(tf.strings.lower(input_str)))
left = 0
right = max(0, max_len - len(tokens))
paddings = tf.constant([[left, right]])
# pad the list so that its length will be equal to max_len
padded_list = tf.pad(tokens, paddings, mode="CONSTANT", constant_values=token2idx[padding_value])
input_words = tf.reshape(padded_list, [1,max_len])
except:
print('\n- - - - ERROR MSG - - - -\n')
traceback.print_exc()
print('\n- - - - END MSG - - - -\n')
padded_list = [0]*max_len
# a dummy list but necessary because the output's shape of InputProcessingLayer must be compatible with the embedding layer's shape of the model
input_words = np.array(padded_list, dtype='int32').reshape(1,max_len)
return input_words
def get_config(self):
config = super().get_config()
config['vocab'] = self.vocab
return config
Add layer to the model
vocab = tf.keras.layers.StringLookup(vocabulary=[x for x in token2idx.keys()])
temp_model = Sequential([
Input(shape=(max_len,), dtype=tf.string, name='description'),
InputProcessingLayer(vocab),
model
])
temp_model.compile('adam', loss=None, run_eagerly=False)
Test the final model
sample_input = "James birthday is on 11/11/2021"
pred = temp_model.predict([sample_input])
print(pred)
With run_eagerly=False
I get (notice that 17 is the max_len
)
WARNING:tensorflow:Model was constructed with shape (None, 17) for input KerasTensor(type_spec=TensorSpec(shape=(None, 17), dtype=tf.string, name='description'), name='description', description="created by layer 'description'"), but it was called on an input with incompatible shape (None,).
--> Tensor("IteratorGetNext:0", shape=(None,), dtype=string) <class 'tensorflow.python.framework.ops.Tensor'>
Notice that what follows the -->
is a print from inside the InputProcessingLayer, and in this case it says that the string received by the layer is "IteratorGetNext:0"
instead of "James birthday is on 11/11/2021"
.
By using run_eagerly=True
then string received by the layer is correct
--> tf.Tensor([b'James birthday is on 11/11/2021'], shape=(1,), dtype=string) <class 'tensorflow.python.framework.ops.EagerTensor'>
However, if I save the model, i.e. temp_model.save(EXPORT_PATH, overwrite=True)
, and then load it for a prediction, then it doesn’t work
import tensorflow as tf
loaded_model = tf.keras.models.load_model(EXPORT_PATH)
sample_input = "James birthday is on 11/11/2021"
pred = loaded_model.predict([sample_input])
print(pred)
raises an error
WARNING:tensorflow:Model was constructed with shape (None, 17) for input KerasTensor(type_spec=TensorSpec(shape=(None, 17), dtype=tf.string, name='description'), name='description', description="created by layer 'description'"), but it was called on an input with incompatible shape (None,).
Traceback (most recent call last):
File "C:\Users\gtu\Desktop\test_signature_inp.py", line 12, in <module>
pred = loaded_model.predict([sample_input])
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\tensorflow\python\framework\func_graph.py", line 1147, in autograph_handler
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1801, in predict_function *
return step_function(self, iterator)
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1790, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1783, in run_step **
outputs = model.predict_step(data)
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\engine\training.py", line 1751, in predict_step
return self(x, training=False)
File "C:\Users\gtu\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
ValueError: Exception encountered when calling layer "input_processing_layer" (type Custom>pre_processing_layer).
Could not find matching concrete function to call loaded from the SavedModel. Got:
Positional arguments (2 total):
* Tensor("input_str:0", shape=(None,), dtype=string)
* False
Keyword arguments: {}
Expected these arguments to match one of the following 2 option(s):
Option 1:
Positional arguments (2 total):
* TensorSpec(shape=(None, 17), dtype=tf.string, name='input_str')
* False
Keyword arguments: {}
Option 2:
Positional arguments (2 total):
* TensorSpec(shape=(None, 17), dtype=tf.string, name='input_str')
* True
Keyword arguments: {}
Call arguments received:
• args=('tf.Tensor(shape=(None,), dtype=string)',)
• kwargs={'training': 'False'}
From the error we see that the string received by the layer is "input_str:0"
, instead of the one passed to the predict method. What’s going on here?