InvalidArgumentError: Graph execution error (NLP)

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:], epochs=10, batch_size=32, validation_split=0.2)

I have used this code for Compile and Train the Model. But I am facing “Graph execution error”. After doing some staff I found some solution like batch_size issue. I have tried batch_size as 64&32 both but find similar issue. For your kind concern, I have used text dataset.

Hi @MD_Raihanul_Islam_To, Could you please provide more information about the type of NLP model you are building like a classification task, text generation etc. If possible could you please provide the stand alone code to reproduce the issue. Thank You.

Thanks for your response.
Actually I am trying to build a model to translate one langulage to another. But I am facing this error to compiled & fit the model.

Hi @MD_Raihanul_Islam_To, If possible could you please provide the stand alone code to reproduce the issue. Thank You.

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense

Load and Preprocess Data:

# Load data from CSV
df = pd.read_csv('dataset.csv')

# Tokenize the sentences
tokenizer_eng = tf.keras.preprocessing.text.Tokenizer(filters='')
tokenizer_eng.fit_on_texts(df['english'])
input_sequences = tokenizer_eng.texts_to_sequences(df['english'])

tokenizer_frn = tf.keras.preprocessing.text.Tokenizer(filters='')
tokenizer_frn.fit_on_texts(df['french'])
target_sequences = tokenizer_frn.texts_to_sequences(df['french'])

# Pad sequences to the same length
input_sequences = tf.keras.preprocessing.sequence.pad_sequences(input_sequences)
target_sequences = tf.keras.preprocessing.sequence.pad_sequences(target_sequences)

Build the Model:

# Set hyperparameters
embedding_dim = 256
units = 512
input_vocab_size = len(tokenizer_eng.word_index) + 1
target_vocab_size = len(tokenizer_frn.word_index) + 1

# Define the Encoder
encoder_inputs = Input(shape=(None,))
encoder_embedding = Embedding(input_vocab_size, embedding_dim)(encoder_inputs)
encoder_lstm = LSTM(units, return_state=True)
encoder_outputs, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]

# Define the Decoder
decoder_inputs = Input(shape=(None,))
decoder_embedding = Embedding(target_vocab_size, embedding_dim)(decoder_inputs)
decoder_lstm = LSTM(units, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
decoder_dense = Dense(target_vocab_size, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Build the model
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

Compile and Train the Model:

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:], epochs=10, batch_size=64, validation_split=0.2)

this is the entire code I have used.

And the error I have faced:

Epoch 1/10
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-12-235fc25bdbdc> in <module>
      1 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
----> 2 model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:], epochs=10, batch_size=32, validation_split=0.2)

D:\Python\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs)
     65     except Exception as e:  # pylint: disable=broad-except
     66       filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67       raise e.with_traceback(filtered_tb) from None
     68     finally:
     69       del filtered_tb

D:\Python\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     52   try:
     53     ctx.ensure_initialized()
---> 54     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
     55                                         inputs, attrs, num_outputs)
     56   except core._NotOkStatusException as e:

InvalidArgumentError: Graph execution error:

Detected at node 'model/embedding_1/embedding_lookup' defined at (most recent call last):
    File "D:\Python\lib\runpy.py", line 194, in _run_module_as_main
      return _run_code(code, main_globals, None,
    File "D:\Python\lib\runpy.py", line 87, in _run_code
      exec(code, run_globals)
    File "D:\Python\lib\site-packages\ipykernel_launcher.py", line 16, in <module>
      app.launch_new_instance()
    File "D:\Python\lib\site-packages\traitlets\config\application.py", line 664, in launch_instance
      app.start()
    File "D:\Python\lib\site-packages\ipykernel\kernelapp.py", line 612, in start
      self.io_loop.start()
    File "D:\Python\lib\site-packages\tornado\platform\asyncio.py", line 149, in start
      self.asyncio_loop.run_forever()
    File "D:\Python\lib\asyncio\base_events.py", line 570, in run_forever
      self._run_once()
    File "D:\Python\lib\asyncio\base_events.py", line 1859, in _run_once
      handle._run()
    File "D:\Python\lib\asyncio\events.py", line 81, in _run
      self._context.run(self._callback, *self._args)
    File "D:\Python\lib\site-packages\tornado\ioloop.py", line 690, in <lambda>
      lambda f: self._run_callback(functools.partial(callback, future))
    File "D:\Python\lib\site-packages\tornado\ioloop.py", line 743, in _run_callback
      ret = callback()
    File "D:\Python\lib\site-packages\tornado\gen.py", line 787, in inner
      self.run()
    File "D:\Python\lib\site-packages\tornado\gen.py", line 748, in run
      yielded = self.gen.send(value)
    File "D:\Python\lib\site-packages\ipykernel\kernelbase.py", line 381, in dispatch_queue
      yield self.process_one()
    File "D:\Python\lib\site-packages\tornado\gen.py", line 225, in wrapper
      runner = Runner(result, future, yielded)
    File "D:\Python\lib\site-packages\tornado\gen.py", line 714, in __init__
      self.run()
    File "D:\Python\lib\site-packages\tornado\gen.py", line 748, in run
      yielded = self.gen.send(value)
    File "D:\Python\lib\site-packages\ipykernel\kernelbase.py", line 365, in process_one
      yield gen.maybe_future(dispatch(*args))
    File "D:\Python\lib\site-packages\tornado\gen.py", line 209, in wrapper
      yielded = next(result)
    File "D:\Python\lib\site-packages\ipykernel\kernelbase.py", line 268, in dispatch_shell
      yield gen.maybe_future(handler(stream, idents, msg))
    File "D:\Python\lib\site-packages\tornado\gen.py", line 209, in wrapper
      yielded = next(result)
    File "D:\Python\lib\site-packages\ipykernel\kernelbase.py", line 543, in execute_request
      self.do_execute(
    File "D:\Python\lib\site-packages\tornado\gen.py", line 209, in wrapper
      yielded = next(result)
    File "D:\Python\lib\site-packages\ipykernel\ipkernel.py", line 306, in do_execute
      res = shell.run_cell(code, store_history=store_history, silent=silent)
    File "D:\Python\lib\site-packages\ipykernel\zmqshell.py", line 536, in run_cell
      return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
    File "D:\Python\lib\site-packages\IPython\core\interactiveshell.py", line 2866, in run_cell
      result = self._run_cell(
    File "D:\Python\lib\site-packages\IPython\core\interactiveshell.py", line 2895, in _run_cell
      return runner(coro)
    File "D:\Python\lib\site-packages\IPython\core\async_helpers.py", line 68, in _pseudo_sync_runner
      coro.send(None)
    File "D:\Python\lib\site-packages\IPython\core\interactiveshell.py", line 3071, in run_cell_async
      has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
    File "D:\Python\lib\site-packages\IPython\core\interactiveshell.py", line 3263, in run_ast_nodes
      if (await self.run_code(code, result,  async_=asy)):
    File "D:\Python\lib\site-packages\IPython\core\interactiveshell.py", line 3343, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
    File "<ipython-input-12-235fc25bdbdc>", line 2, in <module>
      model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:], epochs=10, batch_size=32, validation_split=0.2)
    File "D:\Python\lib\site-packages\keras\utils\traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\engine\training.py", line 1384, in fit
      tmp_logs = self.train_function(iterator)
    File "D:\Python\lib\site-packages\keras\engine\training.py", line 1021, in train_function
      return step_function(self, iterator)
    File "D:\Python\lib\site-packages\keras\engine\training.py", line 1010, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "D:\Python\lib\site-packages\keras\engine\training.py", line 1000, in run_step
      outputs = model.train_step(data)
    File "D:\Python\lib\site-packages\keras\engine\training.py", line 859, in train_step
      y_pred = self(x, training=True)
    File "D:\Python\lib\site-packages\keras\utils\traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\engine\base_layer.py", line 1096, in __call__
      outputs = call_fn(inputs, *args, **kwargs)
    File "D:\Python\lib\site-packages\keras\utils\traceback_utils.py", line 92, in error_handler
      return fn(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\engine\functional.py", line 451, in call
      return self._run_internal_graph(
    File "D:\Python\lib\site-packages\keras\engine\functional.py", line 589, in _run_internal_graph
      outputs = node.layer(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\utils\traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\engine\base_layer.py", line 1096, in __call__
      outputs = call_fn(inputs, *args, **kwargs)
    File "D:\Python\lib\site-packages\keras\utils\traceback_utils.py", line 92, in error_handler
      return fn(*args, **kwargs)
    File "D:\Python\lib\site-packages\keras\layers\embeddings.py", line 197, in call
      out = tf.nn.embedding_lookup(self.embeddings, inputs)
Node: 'model/embedding_1/embedding_lookup'
indices[26,129] = 6453 is not in [0, 5002)
	 [[{{node model/embedding_1/embedding_lookup}}]] [Op:__inference_train_function_5695]

Hi @MD_Raihanul_Islam_To, The error is due to the while creating a embeddings for index values, the index value is not present in the model vocabulary. while defining the vocab size make sure that the vocab size is maximum integer index + 1. Thank You.