How to solve"F ./tensorflow/core/util/gpu_launch_config.h:129] Check failed: work_element_count > 0."

When i use the hyperband to train the autoencoder-cnn, i always find that there is a erroe:
F ./tensorflow/core/util/gpu_launch_config.h:129] Check failed: work_element_count > 0.

May i ask how to solve this problem?

Please share complete error stack trace and standalone code to reproduce the issue to debug the above issue?

Of course! here is the code but no data. Always meet this question, someone said it’s due to exceeding int32 limitation. But i dont know why.

import kerastuner as kt
#from google.colab import drive
import pandas as pd
import glob
import pdb
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import os
import subprocess
import h5py
from tensorflow.keras import Sequential, layers, Model

from tensorflow.keras.utils import Sequence

class DataGenerator(Sequence):

def __init__(self, list_files, to_fit=True, mini_batch = 1000, batch_size=1, shuffle=True):


    self.list_files = list_files
    self.mini_batch = mini_batch
    self.data_path = data_path
    #self.mask_path = mask_path
    self.to_fit = to_fit
    self.batch_size = batch_size
    #self.dim = dim
    #self.n_channels = n_channels
    #self.n_classes = n_classes
    self.shuffle = shuffle
    self.on_epoch_end()

def __len__(self):

    return int(np.floor(len(self.list_files) / self.batch_size))

def __getitem__(self, index):

    # Generate indexes of the batch
    indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]

    # Find list of IDs
    list_files_temp = [self.list_files[k] for k in indexes]

    # Generate data
    X = self._generate_X(list_files_temp)

    #return X

    if self.to_fit:
        y = X
        return (X, y)
    else:
        return X

def on_epoch_end(self):

    self.indexes = np.arange(len(self.list_files))
    if self.shuffle == True:
        np.random.shuffle(self.indexes)

def _generate_X(self, list_files_temp):



    if len(list_files_temp) == 1:
      path = list_files_temp[0][0]
      start_loc = list_files_temp[0][1]
      end_loc = list_files_temp[0][2]
      stop_point = min(start_loc+self.mini_batch,end_loc)


      hf = h5py.File(path, 'r')
      data=hf['test']['block0_values'][start_loc:stop_point, 33::]

      data = data[~np.all(data == 0, axis=1)]
      data=data[~np.isnan(data).all(axis=1)]
      data=data[np.isfinite(data).all(axis=1)]

      # basic stratgey here is to convert the image into a sharpened replica
      data=data/np.max(data,axis=1)[:,None]

      X=data.reshape(data.shape[0],80,24,1)

    else:
      Scattering_list=[None] * len(list_files_temp)
      step=0
      for entry in list_files_temp:
        path = entry[0]
        start_loc = entry[1]
        end_loc = entry[2]
        stop_point = min(start_loc+self.mini_batch,end_loc)

        hf = h5py.File(path, 'r')
        Scattering_list[step]=hf['test']['block0_values'][start_loc:stop_point, 33::]
        #Scattering_list.append(info_df)
        step+=1

      data = Scattering_list[~np.all(Scattering_list == 0, axis=1)]
      data=data[~np.isnan(data).all(axis=1)]
      data=data[np.isfinite(data).all(axis=1)]
      data=data/np.max(data,axis=1)[:,None]

      X=data.reshape(data.shape[0],80,24,1)

    return X

list_files = glob.glob(data_path+‘*.hdf’)

define a minibatch which would normally be used in the standard training method

minibatch = 1000

list_of_mappings =

for filename in list_files:

hf=pd.read_hdf(filename,mode='r')
lines=int(hf.shape[0])
#pdb.set_trace()
chunks = int(np.ceil(lines / minibatch))
for step in range(chunks):
    sublist=[]
    sublist.append(filename)
    sublist.append(step*minibatch)
    sublist.append(min((step + 1)*minibatch,lines-2))
    list_of_mappings.append(sublist)

training_generator = DataGenerator(list_of_mappings[:])
validation_generator = DataGenerator(list_of_mappings[:])

define tunner of ae

def model(hp):

original_inputs = keras.Input(shape=(80, 24, 1), name='encoder_input')
variance_scale = 0.3
init = tf.keras.initializers.VarianceScaling(scale=variance_scale, mode='fan_in', distribution='uniform')
layer= layers.Conv2D(filters=hp.Choice("num_filters_layer_1", values=[8, 32], default=8), kernel_size=3,
                           activation='relu', kernel_initializer=init, padding='same',
                           strides=1)(original_inputs)
layer1 = layers.Conv2D(filters=hp.Int("num_filters_layer_2", min_value=16, max_value=64, step=16), kernel_size=3,
                      activation='relu', kernel_initializer=init, padding='same',
                      strides=1)(layer)
layer2 = layers.Conv2D(filters=hp.Int("num_filters_layer_3", min_value=16, max_value=96, step=16), kernel_size=3,
                      activation='relu', kernel_initializer=init, padding='same',
                      strides=1)(layer1)
layer3 = layers.Conv2D(filters=hp.Int("num_filters_layer_4", min_value=16, max_value=112, step=16), kernel_size=3,
                      activation='relu', kernel_initializer=init, padding='same',
                      strides=1)(layer2)



layer_flatten = layers.Flatten()(layer3)
h = layers.Dense(hp.Int("num_Dense", 0, 600, 200), activation='relu', name="encoding_5")(layer_flatten)
latent_layer = layers.Dense(hp.Int("latent_space", 20, 40, 10), activation='relu')(h)

#decoder
latent_inputs_cnn = keras.Input(shape=(latent_layer.shape[1],), name='latent_input')
dec_layer1_cnn = layers.Dense(h.shape[1], activation='relu')(latent_inputs_cnn)
dec_layer2_cnn = layers.Dense(layer_flatten.shape[1], activation='relu')(dec_layer1_cnn)
dec_layer = layers.Reshape((layer3.shape[1], layer3.shape[2], layer3.shape[3]))(dec_layer2_cnn)

dec_layer3_cnn = layers.Conv2DTranspose(hp.Int("num_filters_layer_3", min_value=16, max_value=96, step=16),
                                        kernel_size=3, activation='relu', kernel_initializer=init,
                                        padding='same', strides=1)(dec_layer)

dec_layer4_cnn = layers.Conv2DTranspose(filters=hp.Int("num_filters_layer_2", min_value=16, max_value=64, step=16), kernel_size=3,
                       activation='relu', kernel_initializer=init, padding='same',
                       strides=1)(dec_layer3_cnn)


dec_layer5_cnn=layers.Conv2DTranspose(filters=hp.Choice("num_filters_layer_1",values=[8,32],default=8), kernel_size=3, activation='relu', kernel_initializer=init,
                                        padding='same', strides=1)(dec_layer4_cnn)
dec_layer6_cnn = layers.Conv2DTranspose(original_inputs.shape[3], (3, 3), activation='sigmoid',
                                        kernel_initializer=init, padding='same', strides=1)(dec_layer5_cnn)
dec_cnn = Model(inputs=latent_inputs_cnn, outputs=dec_layer6_cnn, name='decoder_cnn')
outputs = dec_cnn(latent_layer)

cnn_ae = Model(inputs=original_inputs, outputs=outputs, name='cnn_ae')

cnn_ae.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-3, 1e-4, 1e-5])),
               loss='binary_crossentropy', metrics=['accuracy'])

return cnn_ae

tuner = kt.Hyperband(model,
objective=‘loss’,
max_epochs=5,
factor=3,
directory=‘my_dir_SE’,
project_name=‘intro_to_kt_se’ ,overwrite=True)

tuner.search(training_generator, epochs=4, workers=4)

best_hps =tuner.get_best_hyperparameters(num_trials=1)[0]

model = tuner.hypermodel.build(best_hps)
history = model.fit(training_generator, epochs=40, workers=4)
model.save(‘model.h5’)

“”'the error is that

2022-10-03 19:18:45.454265: F .\tensorflow/core/util/gpu_launch_config.h:129] Check failed: work_element_count > 0 (0 vs. 0)

Process finished with exit code -1073740791 (0xC0000409)

“”"
could you please tell me what happens?

sorry that i copy all my script but seems the format is not correct. i am a new one in this field. Apologize for this.