I’m working with Malaria dataset and even though I extensively looked throughout the tutorial, documentations, searching over Stackoverflow and looking with chatGPT, I couldn’t find a solution
Here’s the file
`# -- coding: utf-8 --
“”"malaria_detection.ipynb
Automatically generated by Colaboratory.
Original file is located at
Importing Libraries
“”"
import tensorflow as tf### models
import numpy as np### math computations
import matplotlib.pyplot as plt### plots
import sklearn### machine learning library
import cv2## image processing
from sklearn.metrics import confusion_matrix, roc_curve### metrics
import seaborn as sns### visualizations
import datetime
import io
import os
import random
from google.colab import files
from PIL import Image
import albumentations as A
import tensorflow_datasets as tfds
import tensorflow_probability as tfp
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Layer
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dense, Flatten, InputLayer, BatchNormalization, Input, Dropout, RandomFlip, RandomRotation, Resizing, Rescaling
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.metrics import BinaryAccuracy, FalsePositives, FalseNegatives, TruePositives, TrueNegatives, Precision, Recall, AUC, binary_accuracy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import Callback, CSVLogger, EarlyStopping, LearningRateScheduler, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.regularizers import L2, L1
from tensorboard.plugins.hparams import api as hp
from google.colab import drive
from keras import Sequential
“”"# Data Preparation
Data Loading
“”"
dataset, dataset_info = tfds.load(‘malaria’, with_info = True, as_supervised = True, shuffle_files = True, split = [‘train’])
for data in dataset[0].take(4):
print(data)
dataset
dataset_info
def splits(dataset, TRAIN_RATIO, VAL_RATIO, TEST_RATIO):
DATASET_SIZE = len(dataset)
train_dataset = dataset.take(int(TRAIN_RATIO*DATASET_SIZE))
val_test_dataset = dataset.skip(int(TRAIN_RATIODATASET_SIZE))
val_dataset = val_test_dataset.take(int(VAL_RATIODATASET_SIZE))
test_dataset = val_test_dataset.skip(int(VAL_RATIO*DATASET_SIZE))
return train_dataset, val_dataset, test_dataset
TRAIN_RATIO = 0.8
VAL_RATIO = 0.1
TEST_RATIO = 0.1
#dataset = tf.data.Dataset.range(10)
train_dataset, val_dataset, test_dataset = splits(dataset[0], TRAIN_RATIO, VAL_RATIO, TEST_RATIO)
print(list(train_dataset.take(1).as_numpy_iterator()), list(val_dataset.take(1).as_numpy_iterator()), list(test_dataset.take(1).as_numpy_iterator()))
dataset
“”“# Data Visualization”“”
for i, (image, label) in enumerate(train_dataset.take(16)):
ax = plt.subplot(4, 4, i + 1)
plt.imshow(image)
plt.title(dataset_info.features[‘label’].int2str(label))
plt.axis(‘off’)
dataset_info.features[‘label’].int2str(0)
“”“# Data Preprocessing”“”
IM_SIZE = 224
def resize_rescale(image, label):
return tf.image.resize(image, (IM_SIZE, IM_SIZE))/255.0, label
train_dataset = train_dataset.map(resize_rescale)
val_dataset = val_dataset.map(resize_rescale)
test_dataset = test_dataset.map(resize_rescale)
train_dataset
val_dataset
test_dataset
for image, label in train_dataset.take(1):
print(image, label)
BATCH_SIZE = 32
train_dataset = train_dataset.shuffle(buffer_size = 8, reshuffle_each_iteration= True).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.shuffle(buffer_size = 8, reshuffle_each_iteration= True).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
train_dataset
val_dataset
“”“# Model Creation and Training”“”
IM_SIZE = 224
lenet_model = Sequential([
InputLayer(input_shape=(IM_SIZE, IM_SIZE, 3)),
Conv2D(filters = 6, kernel_size = 3, strides = 1, padding = 'valid', activation = 'relu'),
BatchNormalization(),
MaxPool2D(pool_size = 2, strides = 2),
Conv2D(filters = 16, kernel_size = 3, strides = 1, padding='valid', activation='relu'),
BatchNormalization(),
MaxPool2D(pool_size = 2, strides = 2),
Flatten(),
Dense(100, activation="relu"),
BatchNormalization(),
Dense(10, activation="relu"),
BatchNormalization(),
Dense(1, activation="sigmoid"),
])
lenet_model.summary()
“”“# Functional API”“”
IM_SIZE = 224
func_input = Input((IM_SIZE, IM_SIZE, 3), name = “Input Image”)
x = Conv2D(filters = 6, kernel_size = 3, strides = 1, padding = ‘valid’, activation = ‘relu’) (func_input)
x = BatchNormalization()(x)
x = MaxPool2D(pool_size = 2, strides = 2)(x)
x = Conv2D(filters = 16, kernel_size = 3, strides = 1, padding=‘valid’, activation=‘relu’)(x)
x = BatchNormalization()(x)
x = MaxPool2D(pool_size = 2, strides = 2)(x)
x = Flatten()(x)
x = Dense(100, activation=“relu”)(x)
x = BatchNormalization()(x)
x = Dense(10, activation=“relu”)(x)
x = BatchNormalization()(x)
func_output = Dense(1, activation=“sigmoid”)(x)
lenet_model = Model(func_input, func_output, name = “Lenet Model”)
lenet_model.summary()
“”“# Model Training”“”
y_true = [0, 1, 0, 0]
y_pred = [0.6, 0.51, 0.94, 1]
bce = tf.keras.losses.BinaryCrossentropy()
bce(y_true, y_pred)
lenet_model.compile(optimizer=Adam(learning_rate=0.01),
loss=BinaryCrossentropy(),
metrics = ‘accuracy’,)
history = lenet_model.fit(train_dataset, validation_data = val_dataset, epochs=10, verbose=1)
plt.plot(history.history[‘loss’])
plt.plot(history.history[‘val_loss’])
plt.title(‘Model loss’)
plt.ylabel(‘loss’)
plt.xlabel(‘epoch’)
plt.legend([‘train_loss’, ‘val_loss’])
plt.show()
plt.plot(history.history[‘accuracy’])
plt.plot(history.history[‘val_accuracy’])
plt.title(‘Model Accuracy’)
plt.ylabel(‘Accuracy’)
plt.xlabel(‘Epoch’)
plt.legend([‘train_accuracy’, ‘val_accuracy’])
plt.show()
“”“# Model Evaluation and Testing”“”
test_dataset = test_dataset.batch(1)
test_dataset
lenet_model.evaluate(test_dataset)
def parasite_or_not(x):
if x < 0.5:
return str(‘P’)
else:
return str(‘U’)
parasite_or_not(lenet_model.predict(test_dataset.take(1))[0][0])
for i, (image, label) in enumerate(test_dataset.take(9)):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(image[0])
plt.title(str(parasite_or_not(label.numpy()[0])) + “:” + str(parasite_or_not(lenet_model.predict(image)[0][0])))
plt.axis(‘off’)
“”"# Saving and Loading
Saving and Loading from Google Drive
“”"
drive.mount(‘/content/drive/’)
!cp -r /content/lenet/ /content/drive/MyDrive/lenet_colab/
!cp -r /content/drive/MyDrive/lenet_colab/ /content/lenet_colab/
`
Errors
-ValueError Traceback (most recent call last)
in <cell line: 1>()
----> 1 history = lenet_model.fit(train_dataset, validation_data = val_dataset, epochs=10, verbose=1)
3 frames
/usr/lib/python3.10/contextlib.py in enter(self)
133 del self.args, self.kwds, self.func
134 try:
→ 135 return next(self.gen)
136 except StopIteration:
137 raise RuntimeError(“generator didn’t yield”) from None
ValueError: in user code:
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1284, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1268, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1249, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 1050, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.10/dist-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/lib/python3.10/contextlib.py", line 492, in enter_context
result = _cm_type.__enter__(cm)
File "/usr/lib/python3.10/contextlib.py", line 135, in __enter__
return next(self.gen)
ValueError: 'Lenet Model/' is not a valid root scope name. A root scope name has to match the following pattern: ^[A-Za-z0-9.][A-Za-z0-9_.\\/>-]*$
ValueError: in user code:
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 2169, in predict_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 2155, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 2143, in run_step **
outputs = model.predict_step(data)
File "/usr/local/lib/python3.10/dist-packages/keras/engine/training.py", line 2111, in predict_step
return self(x, training=False)
File "/usr/local/lib/python3.10/dist-packages/keras/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.10/dist-packages/keras/engine/input_spec.py", line 298, in assert_input_compatibility
raise ValueError(
ValueError: Input 0 of layer "Lenet Model" is incompatible with the layer: expected shape=(None, 224, 224, 3), found shape=(None, None, None, 224, 224, 3)
I tried going through these errors but I couldn’t solve them and I get these errors multiple times
I appreciate all the help here