Why I am getting 'None' while decoding Tfrecords?

I am currently working on a project based on deep learning where I am using tfrecords for faster training of neural network. Actually I have encoded my data into ‘.tfrecords’, but while decoding it shows tensor of none shape. I have checked my code many times,but I didn’t find any bugs. Can anyone help me with this ? Thanks in advance. Here is my code…

def _bytes_feature(value):

 #Returns a bytes_list from a string / byte
  
    if isinstance(value, type(tf.constant(0))):
       value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
    return tf.train.Feature(bytes_list=tf.train.BytesList(value= [value]))
def serialize_example(image,xmins):
    
    feature = {
        'image':
        _bytes_feature(image),
       
        'xmins':
        tf.train.Feature(float_list=tf.train.FloatList(value=[xmins])),
        }
    example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
    #print(example_proto.Features.feature['xmins'])
    return example_proto.SerializeToString()
    


with tf.io.TFRecordWriter('/content/'+'prac.tfrecords') as writer:
  image = np.array(image,dtype=int)
  byte_image = tf.io.serialize_tensor(image)
  xmins= float(2.3)
  example = serialize_example(byte_image,xmins)
  
  writer.write(example)

For simplicity I have taken only two types of input , image and xmins. Here, I have generated ‘.tfrecords’
Decoding

def read_tf_records(example_proto):
        image_feature_description = {
                'image': tf.io.FixedLenFeature((), tf.string),
               
                'xmins': tf.io.VarLenFeature(tf.float32),
                
        }
        sample = tf.io.parse_single_example(example_proto,image_feature_description)
        
        image =tf.io.parse_tensor(sample['image'],out_type = tf.float64)
        xmins = sample['xmins']
        #image = tf.reshape(image,(416,416))
        #print(image)
        #xmins =tf.sparse.to_dense(sample['xmins'])
        
        
       
       
        return image,xmins



path='/content/prac.tfrecords'
tfrecord_dataset = tf.data.TFRecordDataset(path)
decoded_data= tfrecord_dataset.map(read_tf_records)
print(decoded_data)

<MapDataset shapes: (<unknown>, (None,)), types: (tf.float64, tf.float32)>

Hi @Pritesh_Bhimani,

Sorry for the delay in response.
I suggest to try few things to fix this like changing the tf.io.VarLenFeature to tf.io.FixedLenFeature([], tf.float32) when xmins is single float. Use tf.io.parse_tensor with the appropriate output type (e.g., tf.float32) for the image and return xmins as a scalar directly if you are using FixedLenFeature. Please refer this official documentation for more information about TFRecords.

Hope this helps.Thank You.