I’m having issues where TF can’t calculate the cardinality of my custom dataset in graph execution mode (its dimension is set to None). But specifying None, 1, or a random int like 5 doesn’t change that it’s always trying to calculate it. I’m totally missing any docs on why this is a problem.
model.fit(
dataset_choice.dataset,
epochs=args.epochs,
steps_per_epoch = 5,
callbacks=[tensorboard_callback])
Traceback (most recent call last):
history = model.fit(dataset_choice.dataset, epochs=args.epochs, callbacks=[tensorboard_callback])
packages/keras/src/trainers/data_adapters/tf_dataset_adapter.py", line 73, in num_batches
**cardinality = int(self._dataset.cardinality())**
TypeError: int() argument must be a string, a bytes-like object or a real number, not 'SymbolicTensor'