When using `TextVectorization` to tokenize strings, the input rank must be 1 or the last shape dimension must be 1. Received:

I am trying to replicate listwise loss for deep ranking model, basically I am trying to combine below listwise ranking and deep model recommender documentations from tensorflow.org.

  1. Classificação Listwise  |  TensorFlow Recommenders

Below are the detailed code, but this is giving error as When using `TextVectorization` to tokenize strings, the input rank must be 1 or the last shape dimension must be 1. Received: inputs.shape=(None, 5) with rank=2

How can I flatten the tensor data so TextVectorization can work? I have tried using tf.flatten() but no sucees.

!pip install -q tensorflow-recommenders
!pip install -q --upgrade tensorflow-datasets
!pip install -q tensorflow-ranking

import pprint

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

import tensorflow_ranking as tfr
import tensorflow_recommenders as tfrs
from typing import Dict, Text
import os
import tempfile

ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")

ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "user_rating": x["user_rating"],
    # "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

tf.random.set_seed(42)

# Split between train and tests sets, as before.
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# We sample 50 lists for each user for the training data. For each list we
# sample 5 movies from the movies the user rated.
train = tfrs.examples.movielens.sample_listwise(
    train,
    num_list_per_user=50,
    num_examples_per_list=5,
    seed=42
)
test = tfrs.examples.movielens.sample_listwise(
    test,
    num_list_per_user=1,
    num_examples_per_list=5,
    seed=42
)

for example in train.take(1):
  pprint.pprint(example)

class UserModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])
    # self.timestamp_embedding = tf.keras.Sequential([
    #     tf.keras.layers.Discretization(timestamp_buckets.tolist()),
    #     tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
    # ])
    # self.normalized_timestamp = tf.keras.layers.Normalization(
    #     axis=None
    # )

    # self.normalized_timestamp.adapt(timestamps)

  def call(self, inputs):
    # Take the input dictionary, pass it through each input layer,
    # and concatenate the result.
    # return tf.concat([
    #     self.user_embedding(inputs["user_id"]),
    #     self.timestamp_embedding(inputs["timestamp"]),
    #     tf.reshape(self.normalized_timestamp(inputs["timestamp"]), (-1, 1)),
    # ], axis=1)
    return self.user_embedding(inputs["user_id"])


class QueryModel(tf.keras.Model):
  """Model for encoding user queries."""

  def __init__(self, layer_sizes):
    """Model for encoding user queries.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    # We first use the user model for generating embeddings.
    self.embedding_model = UserModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)


class MovieModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    max_tokens = 10_000

    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.StringLookup(
          vocabulary=unique_movie_titles,mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])

    self.title_vectorizer = tf.keras.layers.TextVectorization(
        max_tokens=max_tokens)

    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])

    self.title_vectorizer.adapt(movies)

  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)


class CandidateModel(tf.keras.Model):
  """Model for encoding movies."""

  def __init__(self, layer_sizes):
    """Model for encoding movies.

    Args:
      layer_sizes:
        A list of integers where the i-th entry represents the number of units
        the i-th layer contains.
    """
    super().__init__()

    self.embedding_model = MovieModel()

    # Then construct the layers.
    self.dense_layers = tf.keras.Sequential()

    # Use the ReLU activation for all but the last layer.
    for layer_size in layer_sizes[:-1]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))

    # No activation for the last layer.
    for layer_size in layer_sizes[-1:]:
      self.dense_layers.add(tf.keras.layers.Dense(layer_size))

  def call(self, inputs):
    feature_embedding = self.embedding_model(inputs)
    return self.dense_layers(feature_embedding)


class MovielensModel(tfrs.models.Model):

  def __init__(self, layer_sizes):
    super().__init__()
    self.query_model = QueryModel(layer_sizes)
    self.candidate_model = CandidateModel(layer_sizes)
    self.rating_model = tf.keras.Sequential([
        tf.keras.layers.Dense(256, activation="relu"),
        tf.keras.layers.Dense(128, activation="relu"),
        tf.keras.layers.Dense(1),
    ])
    self.rating_task: tf.keras.layers.Layer = tfrs.tasks.Ranking(
        loss=tf.keras.losses.MeanSquaredError(),
        metrics=[tf.keras.metrics.RootMeanSquaredError()],
    )

  def call(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
    # We pick out the user features and pass them into the user model.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        # "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])

    return (
        user_embeddings,
        movie_embeddings,
        # We apply the multi-layered rating model to a concatentation of
        # user and movie embeddings.
        self.rating_model(
            tf.concat([user_embeddings, movie_embeddings], axis=1)
        ),
    )
  
  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    ratings = features.pop("user_rating")

    user_embeddings, movie_embeddings, rating_predictions = self(features)

    rating_loss = self.rating_task(
        labels=ratings,
        predictions=rating_predictions,
    )
    retrieval_loss = self.retrieval_task(user_embeddings, movie_embeddings)

    return (retrieval_loss)

model = MovielensModel(layer_sizes=[32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))


cached_train = train.shuffle(100_000).batch(8192).cache()
cached_test = test.batch(4096).cache()


model.fit(cached_train, epochs=3)
metrics = model.evaluate(cached_test, return_dict=True)

print(f"Retrieval top-100 accuracy: {metrics['factorized_top_k/top_100_categorical_accuracy']:.3f}.")
print(f"Ranking RMSE: {metrics['root_mean_squared_error']:.3f}.")

1 Like

Used reshape for the input to TextVectorization detailed solution is given here

for my part flattern() worked, thank you for exposing the problem and a possible solution, because the combination of information allowed me to solve this problem:

text_ds = tf.data.Dataset.from_tensor_slices(np.array([list(clean_text.values)]).flatten())
# Filtre pour supprimer les éléments de longueur nulle
text_ds = text_ds.filter(lambda x: tf.cast(tf.strings.length(x), bool))

vectorize_layer.adapt(text_ds.batch(1024))

:wink: :metal: :+1: