I do not see a way to do this:
model.fitDataset(asyncGenerator)
This would be useful when you have to load files asynchronously i.e:
const iteratorParams = (n: number, labels: number[][], paths: string[]) =>
async function* makeIterator() {
let i = 0;
let result;
while (i < n) {
let originalImg = tf.node.decodeImage(await readFile(paths[i]), 3);
const resizedImage = tf.image
.resizeBilinear(originalImg, [224, 224])
.div(255);
const [height, width] = originalImg.shape;
const scale = tf.tensor1d([1 / width, 1 / height, 1 / width, 1 / height]);
const label = tf.tensor1d(labels[i]).mul(scale);
result = {
xs: resizedImage as tf.Tensor3D,
ys: label,
};
i++;
yield result;
}
};
What do you think @macd ?