I was trying to implement YOLO with 5 anchor boxes. I wanted to use keras.backend.max as described here but it’s not functioning properly or I am misunderstanding it.
The code looks something like this:
`
from keras import backend as K
with tf.compat.v1.Session() as test_a:
example = tf.random.normal([4, 4, 2, 2], mean=1, stddev=4, seed = 1)
print(example.eval())
# test = K.argmax(example, axis=-1)
# print(test.eval())
another_test = K.max(example, axis = -1)
print(another_test.eval())
`
The output is this:
`
[[[[-2.2452729 6.938395 ]
[ 1.2613175 -8.770817 ]]
[[ 1.3969936 3.3648973 ]
[ 3.3712919 -7.4917183 ]]
[[-1.8915889 0.7749185 ]
[ 3.5741792 -0.05729628]]
[[ 8.426533 3.2713668 ]
[-0.5313436 -4.9413733 ]]]
[[[ 6.0470843 0.8987757 ]
[-0.05851877 7.131255 ]]
[[-5.9719086 -0.7515718 ]
[-1.26404 2.2826772 ]]
[[ 5.531324 -8.113029 ]
[ 2.9312482 -4.250835 ]]
[[ 2.4274013 -5.9211335 ]
[ 0.83932906 4.5986476 ]]]
[[[-4.5223565 6.9258494 ]
[ 0.01802081 -1.9305887 ]]
[[ 0.21641421 1.2868321 ]
[ 3.5319235 -5.284763 ]]
[[ 6.317525 -3.693468 ]
[ 1.1261784 2.9082098 ]]
[[ 2.747768 -0.26723564]
[-0.8030013 -6.2242627 ]]]
[[[ 1.4995985 -2.0826168 ]
[-1.9849663 -0.12781298]]
[[-6.835262 -0.35044277]
[ 5.1207933 7.053607 ]]
[[ 1.9006321 -0.14264834]
[ 2.0753016 7.984844 ]]
[[ 4.695484 -7.2363987 ]
[-0.25753224 5.841353 ]]]]
[[[-0.0205164 5.3679433 ]
[ 3.9440122 4.684675 ]
[ 4.1706614 1.3993862 ]
[ 9.333472 3.0931065 ]]
[[ 6.7779894 5.3317556 ]
[-3.0122952 -1.5482914 ]
[-0.5402719 -5.03914 ]
[ 3.0354424 2.9042442 ]]
[[ 4.730604 2.9970727 ]
[ 3.8026135 0.04406112]
[ 5.1083784 9.928441 ]
[-1.8228705 1.4313807 ]]
[[ 7.075215 -4.0160027 ]
[ 2.046008 0.94906276]
[ 0.6468721 1.6242697 ]
[-0.2219665 5.4110713 ]]] `
As far as I can comprehend it should return the max value but what is it returning?