TFX pipeline root not found

Hello guys,
im currently configuring a tfx pipeline with components such as SchemaGen,StatisticGen and Transform in my .ipynb:

module_file = os.path.abspath(“…\components\module.py”)
#%%
stats_gen = StatisticsGen(
examples=example_gen.outputs[‘examples’]
)
#%%
context.run(stats_gen)
#%%
schema_gen = SchemaGen(
statistics=stats_gen.outputs[‘statistics’])
#%%
context.run(schema_gen)
#%%
transform = Transform(
examples=example_gen.outputs[‘examples’],
schema=schema_gen.outputs[‘schema’],
module_file=module_file)
#%%
context.run(transform)

Providing the statistics-, and schema-gen components and running them in a tfx-workflow using context.run() works as intended.
my context looks like: context = InteractiveContext(pipeline_root=os.path.abspath(‘.\pipeline-root’))

and the pipeline-root path is for storing the metadata.
The error occurs when running context.run(transform), and the error logs are:
RuntimeError: OSError: [WinError 3] The system cannot find the path specified: ‘C:\Users\benne\PycharmProjects\mlops-energieverbrauch\interactive-pipeline\pipeline-root\Transform\updated_analyzer_cache\20\pipeline-root-CsvExampleGen-examples-1-Split-train-STAR-7bed901109c5f95d19d422aeadf97ec632a90adc04f87f51192d4f46edaf114e\beam-temp-25-1867ce6685f511ee85cbe8f408833848’ [while running ‘WriteCache/Write[AnalysisIndex0][CacheKeyIndex25]/Write/WriteImpl/InitializeWrite’]

all the imports for the .ipynb:
import os
from tfx.components import CsvExampleGen, Transform, schema_gen, StatisticsGen, SchemaGen
from keras_tuner.src.backend.io import tf
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext
import pprint
import csv
import pandas as pd
from tfx.proto import example_gen_pb2
import tensorflow_data_validation as tfdv

the appropriate module.py with the preprocessing_fn() looks like:

import tensorflow_transform as tft
from tfx.examples.chicago_taxi_pipeline.taxi_utils_native_keras import _transformed_name as transformed_name
from tfx.experimental.templates.taxi.models.preprocessing import _fill_in_missing as fill_in_missing
import tensorflow as tf

def preprocessing_fn(inputs):
outputs = {}
for key in inputs.keys():
if inputs[key].dtype in [tf.float16, tf.float32, tf.float64,
tf.int8, tf.int16, tf.int32, tf.int64,
tf.uint8, tf.uint16, tf.uint32, tf.uint64]:
outputs[transformed_name(key)] = tft.scale_to_z_score(fill_in_missing(inputs[key]))
else:
outputs[transformed_name(key)] = fill_in_missing(inputs[key]) # Fill missing values for non-numeric data
return outputs

Does anyone have an idea and can maybe help?
Thanks in advance!!!

Does this directory actually exist on your system, and does your process have permission to write to it?