tf.keras.experimental.SequenceFeatures (issues with zeros in seq.)

Does anyone know how to preserve the sparse zeros in a tensor when using tf.keras.experimental.SequenceFeatures? It seems to require a sparse tensor, but that eliminates the zeros in a sequence. If I have zeros in a sequence it throws an error

Does anyone know of another way to input sequence data into tensorflow using features?

here is a toy example:

import numpy as np 
import tensorflow as tf 
from tensorflow.keras.layers import LSTM, Dropout, Dense 

inputs = {'x1': tf.keras.layers.Input(name='x1', sparse=True, shape=(10), dtype='float32'), 
      'x2': tf.keras.layers.Input(name='x2', sparse=True, shape=(10), dtype='float32')} 

columns = [tf.feature_column.sequence_numeric_column('x1', dtype=tf.float32), 
        tf.feature_column.sequence_numeric_column('x2', dtype=tf.float32)]

input_layer, input_length = tf.keras.experimental.SequenceFeatures(columns)(inputs)
lstm_out = LSTM(128, return_sequences=False)(input_layer) 
lstm_out = Dense(5)(lstm_out) 
model = tf.keras.models.Model(inputs, lstm_out) 
model.compile(loss='mse', metrics='mae', optimizer='Adam') 


def generator(): 
    while True: 
        x_1 =np.asarray([[0,1,2,3,4,0,6,7,8,9],[1,2,3,4,5,0,7,8,9,10]], np.float32) 
        x_2 =np.asarray([[1,0.1,0,0.3,0.4,0.5,0.6,0.7,0.8,0.9],  
                         [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0]], np.float32) 
        x1 = tf.sparse.from_dense(tf.convert_to_tensor(x_1, np.float32)) 
        x2 = tf.sparse.from_dense(tf.convert_to_tensor(x_2, np.float32)) 
        x = {'x1': x1, 'x2': x2} 
        data_np = np.asarray([[11,12,13,14,15],[12,13,14,15,16]], np.float32) 
        y = tf.convert_to_tensor(data_np, np.float32) 
        yield x, y 


x, y = generator().__next__() 

data = tf.data.Dataset.from_generator(generator, output_signature=({'x1': 
tf.SparseTensorSpec(tf.TensorShape([2, 10]), tf.float32),                                                     
'x2': tf.SparseTensorSpec(tf.TensorShape([2, 10]), tf.float32)}, tf.TensorSpec(shape=(2, 5), 
dtype=tf.float32))) 

model.fit(data, steps_per_epoch=1, epochs=1, verbose=2)

Hi @Tony_S, I think this tf.keras.experimental.SequenceFeatures was deprecated. In the latest version of tensorflow you can directly pass sequential data to the model directly. Thank You.