Tensorflow2.8 and p100 gpu memory

We lately upgraded tensorflow 2.3 to tensorflow2.8.
We encounter serious memory issues. We get out of memory.
With the same script we can put x11 in the gpu virtual memory.
Can we use tensorflow2.8 with p100 gpu card?

Environment

TensorRT Version: None
GPU Type: P100
Nvidia Driver Version: 460.27.04
CUDA Version: 11.2
CUDNN Version: 8.2.1.32
Operating System + Version: Ubuntu 18.04.4 LTS
Python Version (if applicable): 3.10
TensorFlow Version (if applicable): 2.8
PyTorch Version (if applicable): NA
Baremetal or Container (if container which image + tag): NA

Code:
import tensorflow as tf
import numpy as np

from tensorflow.keras.layers import Dense, Dropout, Input, GlobalAveragePooling2D, Conv2D, MaxPooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import cifar10
import cv2
from tensorflow.python.framework.config import set_memory_growth

gpus = tf.config.experimental.list_physical_devices(‘GPU’)
for gpu in gpus:
set_memory_growth(gpu, True)
dim = 224

def create_model():
inputs = Input(shape=(dim, dim, 3), dtype=‘float16’)
resnet = Conv2D(128, 1)(MaxPooling2D()(inputs))
pooling = GlobalAveragePooling2D()(resnet)
dropout = Dropout(0.4, dtype=‘float32’)(pooling)
class_types = [‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,
‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’]
outputs = Dense(len(class_types), activation=“softmax”, dtype=‘float32’)(dropout)
model = Model(inputs=inputs, outputs=outputs)

return model

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train_arr, y_train_arr = ,
for ind in range(len(x_train)):
x_train_arr.append(x_train[ind])
y_train_arr.append(y_train[ind])
for ind in range(len(x_train)):
x_train_arr.append(x_train[ind])
y_train_arr.append(y_train[ind])
for ind in range(len(x_train)):
x_train_arr.append(x_train[ind])
y_train_arr.append(y_train[ind])
for ind in range(len(x_train)):
x_train_arr.append(x_train[ind])
y_train_arr.append(y_train[ind])
x_train_big, x_test_big = ,
for im in x_train_arr:
x_train_big.append(cv2.resize(im, (dim, dim)))

train_lab_categorical = tf.keras.utils.to_categorical(y_train_arr, num_classes=10, dtype=‘uint8’)

from sklearn.model_selection import train_test_split
print(‘train test split’)
train_im, valid_im, train_lab, valid_lab = train_test_split(x_train_big, train_lab_categorical, test_size=0.20,
stratify=train_lab_categorical,
random_state=40, shuffle = True)
print(‘train test split finished’)
model = create_model()
model.summary()

model.compile(loss=‘categorical_crossentropy’, optimizer=tf.optimizers.Adam(learning_rate=5e-4),
metrics=[‘acc’])

history = model.fit(np.array(x_train_big), np.array(train_lab_categorical),
epochs=1, batch_size=128)

Hi @Dorit_Z, As P100 is a cuda enabled GPU card you can install tensorflow 2.8 gpu. Thank You.