Tensorflow_quantum hybrid models tf-quantum

Hello,

I am trying to QCNN for MNIST classification equivalent to that built in Torch Connector and Hybrid QNNs - Qiskit Machine Learning 0.7.2

I’m having problems trying to pass my quantum circuit built with cirq as a keras layer. Here’s what I have:

# Parameters that the classical NN will feed values into.
control_params = sympy.symbols('theta_1 theta_2 theta_3 theta_4')

# Create the parameterized circuit.
qubits = cirq.GridQubit.rect(2,1)
model_circuit = cirq.Circuit(
    cirq.rx(control_params[0])(qubits[0]),
    cirq.rx(control_params[1])(qubits[1]),
    cirq.rx(control_params[2])(qubits[0]),
    cirq.rx(control_params[3])(qubits[1]),
    cirq.CNOT(qubits[0],qubits[1]))

qlayer = tfq.convert_to_tensor([model_circuit])

SVGCircuit(model_circuit)
width = np.shape(x_train)[1]
height = np.shape(x_train)[2]



model = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(width, height, 1)),  # Specify the input shape correctly
    tf.keras.layers.Conv2D(filters=2, kernel_size=5),
    tf.keras.layers.Conv2D(filters=16, kernel_size=5),
    tf.keras.layers.SpatialDropout2D(rate=0.2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(2, activation='relu'),
    tfq.layers.PQC(model_circuit, [cirq.Z(qubits[1])])  # Use qubits[1] for measurement
])

Which returns the error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[72], line 26
      2 height = np.shape(x_train)[2]
      7 # model = tf.keras.Sequential([
      8     
      9 # # tf.keras.layers.Input(shape=(()), dtype=tf.string), #, dtype=tf.string (28,28,1)
   (...)
     23     
     24 # ])
---> 26 model = tf.keras.Sequential([
     27     tf.keras.layers.Input(shape=(width, height, 1)),  # Specify the input shape correctly
     28     tf.keras.layers.Conv2D(filters=2, kernel_size=5),
     29     tf.keras.layers.Conv2D(filters=16, kernel_size=5),
     30     tf.keras.layers.SpatialDropout2D(rate=0.2),
     31     tf.keras.layers.Flatten(),
     32     tf.keras.layers.Dense(64, activation='relu'),
     33     tf.keras.layers.Dense(2, activation='relu'),
     34     tfq.layers.PQC(model_circuit, [cirq.Z(qubits[1])])  # Use qubits[1] for measurement
     35 ])

File ~/.local/lib/python3.8/site-packages/tensorflow/python/training/tracking/base.py:530, in no_automatic_dependency_tracking.<locals>._method_wrapper(self, *args, **kwargs)
    528 self._self_setattr_tracking = False  # pylint: disable=protected-access
    529 try:
--> 530   result = method(self, *args, **kwargs)
    531 finally:
    532   self._self_setattr_tracking = previous_value  # pylint: disable=protected-access

File ~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67, in filter_traceback.<locals>.error_handler(*args, **kwargs)
     65 except Exception as e:  # pylint: disable=broad-except
     66   filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67   raise e.with_traceback(filtered_tb) from None
     68 finally:
     69   del filtered_tb

File ~/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:699, in convert.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
    697 except Exception as e:  # pylint:disable=broad-except
    698   if hasattr(e, 'ag_error_metadata'):
--> 699     raise e.ag_error_metadata.to_exception(e)
    700   else:
    701     raise

TypeError: Exception encountered when calling layer "pqc_38" (type PQC).

in user code:

    File "/home/zhk26714/.local/lib/python3.8/site-packages/tensorflow_quantum/python/layers/high_level/pqc.py", line 299, in call  *
        model_appended = self._append_layer(inputs, append=tiled_up_model)
    File "/home/zhk26714/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler  **
        raise e.with_traceback(filtered_tb) from None

    TypeError: Exception encountered when calling layer "add_circuit_40" (type AddCircuit).
    
    in user code:
    
        File "/home/zhk26714/.local/lib/python3.8/site-packages/tensorflow_quantum/python/layers/circuit_construction/elementary.py", line 128, in call  *
            return tfq_utility_ops.append_circuit(inputs, append)
        File "/home/zhk26714/.local/lib/python3.8/site-packages/tensorflow_quantum/core/ops/tfq_utility_ops.py", line 65, in append_circuit  *
            return UTILITY_OP_MODULE.tfq_append_circuit(programs, programs_to_append)
        File "<string>", line 73, in tfq_append_circuit  **
            
    
        TypeError: Input 'programs' of 'TfqAppendCircuit' Op has type float32 that does not match expected type of string.
    
    
    Call arguments received:
      • inputs=tf.Tensor(shape=(None, 2), dtype=float32)
      • append=tf.Tensor(shape=(None,), dtype=string)
      • prepend=None


Call arguments received:
  • inputs=tf.Tensor(shape=(None, 2), dtype=float32)

The documentation on QCNNs using tensorflow is pretty limited (Quantum Convolutional Neural Network  |  TensorFlow Quantum) and instead here they are actually using the quantum layer to reduce dimensionality which I’m not trying to do.

Any help would be greatly appreciated.