I am training my data for sign language. There are 26 classes(or folder) of each alphabet. Training data has 30 images each and test have 10 images each.
After training to train the data I am getting following error
File "c:\Users\Rishith Vadher\Downloads\ml.proj\ml.proj\ml project\newtrain.py", line 66, in <module>
classifier.fit(
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\additionalPackages\envs\miniProject\lib\site-packages\tensorflow\python\eager\execute.py", line 54, in quick_execute
tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error:
Detected at node 'categorical_crossentropy/softmax_cross_entropy_with_logits' defined at (most recent call last):
File "c:\Users\Rishith Vadher\Downloads\ml.proj\ml.proj\ml project\newtrain.py", line 66, in <module>
classifier.fit(
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\engine\training.py", line 1564, in fit
tmp_logs = self.train_function(iterator)
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\engine\training.py", line 1160, in train_function
return step_function(self, iterator)
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\engine\training.py", line 1146, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\engine\training.py", line 1135, in run_step
outputs = model.train_step(data)
File "C:\additionalPackages\envs\miniProject\lib\site-packages\keras\engine\training.py", line 994, in train_step
[[{{node PyFunc}}]]
This is my code for training.
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense , Dropout
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
sz = 128
# Step 1 - Building the CNN
# Initializing the CNN
classifier = Sequential()
# First convolution layer and pooling
classifier.add(Convolution2D(32, (3, 3), input_shape=(sz, sz, 1), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Second convolution layer and pooling
classifier.add(Convolution2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
#classifier.add(Convolution2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from the previous convolution layer
#classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Flattening the layers
classifier.add(Flatten(input_shape=(sz, sz, 1)))
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dropout(0.40))
classifier.add(Dense(units=96, activation='relu'))
classifier.add(Dropout(0.40))
classifier.add(Dense(units=64, activation='relu'))
classifier.add(Dense(units=27, activation='softmax')) # softmax for more than 2
# Compiling the CNN
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # categorical_crossentropy for more than 2
# Step 2 - Preparing the train/test data and training the model
classifier.summary()
# Code copied from - https://keras.io/preprocessing/image/
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('data2/train',
target_size=(sz, sz),
batch_size=10,
color_mode='grayscale',
class_mode='categorical')
test_set = test_datagen.flow_from_directory('data2/test',
target_size=(sz , sz),
batch_size=10,
color_mode='grayscale',
class_mode='categorical')
print(training_set)
classifier.fit(
training_set,
steps_per_epoch=783, # No of images in training set
epochs=5,
validation_data=test_set,
validation_steps=260)# No of images in test set
# Saving the model
model_json = classifier.to_json()
with open("model-bw.json", "w") as json_file:
json_file.write(model_json)
print('Model Saved')
classifier.save_weights('model-bw.h5')
print('Weights saved')
Pls help with this