Hello,
I am working from here: examples/courses/udacity_intro_to_tensorflow_lite/tflite_c01_linear_regression.ipynb at master · tensorflow/examples · GitHub .
I am receiving this error:
File "/home/debian/MyFirstTensor.py", line 52
tf_results = model(tf.constant(input_data))
^
SyntaxError: invalid syntax
I tried some relative coding exchanges but nothing seems to be working. Does this Colab still work?
Seth
P.S. This is the entire source:
import tensorflow as tf
import pathlib
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
# creating Keras Model!
x = [-1, 0, 1, 2, 3, 4]
y = [-3, -1, 1, 3, 5, 7]
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(units=1, input_shape=[1])
])
model.compile(optimizer='sgd', loss='mean_squared_error')
model.fit(x, y, epochs=200, verbose=1)
# generating the saved model!
export_dir = 'saved_model/1'
tf.saved_model.save(model, export_dir)
# converting the saved model!
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
tflite_model_file = pathlib.Path('model.tflite')
tflite_model_file.write_bytes(tflite_model)
# initialize the TFLite interpreter!
# Load the TFLite model and allocate tensors...
interpreter = tf.lite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# Getting input and output tensors...
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Testing the TensorFlow Lite model on random input data...
input_shape = input_details[0]['shape']
inputs, outputs = [], []
for _ in range(100):
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_results = interpreter.get_tensor(output_details[0]['index']
# Testing the Tensorflow model on random input data...
tf_results = model(tf.constant(input_data))
output_data = np.array(tf_results)
inputs.append(input_data[0][0])
outputs.append(output_data[0][0])
plt.plot(inputs, outputs, 'r')
plt.show
# download the TFLite model file!
try:
from google.colab import files
files.download(tflite_model_file)
except:
pass