Hello,
I am using tflite_model_maker to train the object detector on custom dataset.
from tflite_model_maker import object_detector
import tensorflow as tf
from tflite_model_maker.config import ExportFormat
assert tf.__version__.startswith('2')
train_data, validation_data, test_data = object_detector.DataLoader.from_csv('data.csv')
spec = object_detector.EfficientDetSpec(
strategy = "gpus",
tflite_max_detections = 100,
model_name='efficientdet-lite2',
uri='https://tfhub.dev/tensorflow/efficientdet/lite2/feature-vector/1',
hparams={
'optimizer' : 'adam',
'learning_rate' : 0.01,
'lr_warmup_init': 0.0008,
'max_instances_per_image': 301,
'autoaugment_policy': 'v0'},
epochs = 20)
model = object_detector.create(train_data, model_spec=spec, batch_size=64, train_whole_model=True, validation_data=validation_data)
model.export(export_dir='.', tflite_filename = "PTQ_model.tflite")
model.export(export_dir='.', export_format=[ExportFormat.SAVED_MODEL])
Can you please guide me on how to apply Quantization Aware training to finetune the trained model ?
Thank you