Problem of infinite load imges

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode=‘nearest’
)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(64, 64), # Adjust the target size as needed
batch_size=32,
class_mode=‘categorical’, # Change this based on your problem
shuffle=True
)

class MyModel(Model):
def init(self):
super(MyModel, self).init()
self.conv1 = Conv2D(32, 3, activation=‘relu’)
self.flatten = Flatten()
self.d1 = Dense(128, activation=‘relu’)
self.d2 = Dense(train_generator.num_classes, activation=‘softmax’)

def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)

model = MyModel()

@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)]
EPOCHS = 5
for epoch in range(EPOCHS):
for images, labels in train_generator:
train_step(images, labels)
##stuck here for infinity

Hi @920204q

Welcome to the TensorFlow Forum!

Could you please try again by changing the drive directory folder name or subfolders name? There could be issue with how you have named the folders inside the drive to access the images. Thank you.