Object detecion: INVALID_ARGUMENT: required broadcastable shapes while training

Tried to train ssd_resnet50_v1_fpn_640x640_coco17_tpu-8 using model_main_tf2.py script with custom dataset.
Label map:

item {
    name:"face"
    id:1
    display_name: "face"
}

pipeline.config:

model {
ssd {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}
feature_extractor {
type: "ssd_resnet50_v1_fpn_keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 0.00039999998989515007
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.029999999329447746
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
override_base_feature_extractor_hyperparams: true
fpn {
min_level: 3
max_level: 7
}
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 0.00039999998989515007
}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582
}
}
activation: RELU_6
batch_norm {
decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513
}
}
depth: 256
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.599999904632568
}
}
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 9.99999993922529e-09
iou_threshold: 0.6000000238418579
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: false
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25
}
}
classification_weight: 1.0
localization_weight: 1.0
}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false
}
}
train_config {
batch_size: 16
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.03999999910593033
total_steps: 25000
warmup_learning_rate: 0.013333000242710114
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.8999999761581421
}
use_moving_average: false
}
fine_tune_checkpoint: "D:\\Vadim\\NIR\\nir\\face_detection\\resnet50\\checkpoint\\ckpt-0"
num_steps: 5000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
use_bfloat16: true
fine_tune_checkpoint_version: V2
}
train_input_reader {
label_map_path: "D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\label_map.pbtxt"
tf_record_input_reader {
input_path: "D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\train.record"
}
}
eval_config {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\val.record"
}
}


I am getting this error:

C:\Users\User\tfod\Scripts\python.exe D:/Vadim/NIR/nir/face_detection/models/research/object_detection/model_main_tf2.py --model_dir=D:\Vadim\NIR\nir\face_detection\resnet50 --pipeline_config_path=D:\Vadim\NIR\nir\face_detection\resnet50\pipeline.config --checkpoint_dir=D:\Vadim\NIR\nir\face_detection\resnet50\checkpoint --num_train_steps=5000
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1.
W0423 02:20:21.550158 11500 model_lib_v2.py:1089] Forced number of epochs for all eval validations to be 1.
INFO:tensorflow:Maybe overwriting sample_1_of_n_eval_examples: None
I0423 02:20:21.551157 11500 config_util.py:552] Maybe overwriting sample_1_of_n_eval_examples: None
INFO:tensorflow:Maybe overwriting use_bfloat16: False
I0423 02:20:21.551157 11500 config_util.py:552] Maybe overwriting use_bfloat16: False
INFO:tensorflow:Maybe overwriting train_steps: 5000
I0423 02:20:21.551157 11500 config_util.py:552] Maybe overwriting train_steps: 5000
INFO:tensorflow:Maybe overwriting eval_num_epochs: 1
I0423 02:20:21.551157 11500 config_util.py:552] Maybe overwriting eval_num_epochs: 1
WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered `eval_on_train_input_config.num_epochs` = 0. Overwriting `num_epochs` to 1.
W0423 02:20:21.552157 11500 model_lib_v2.py:1107] Expected number of evaluation epochs is 1, but instead encountered `eval_on_train_input_config.num_epochs` = 0. Overwriting `num_epoch
s` to 1.
2022-04-23 02:20:21.556973: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the followi
ng CPU instructions in performance-critical operations:  AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-04-23 02:20:22.157664: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 2154 MB memory:  -> device: 0, nam
e: GeForce GTX 1650, pci bus id: 0000:01:00.0, compute capability: 7.5
INFO:tensorflow:Reading unweighted datasets: ['D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\val.record']
I0423 02:20:22.287044 11500 dataset_builder.py:162] Reading unweighted datasets: ['D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\val.record']
INFO:tensorflow:Reading record datasets for input file: ['D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\val.record']
I0423 02:20:22.287814 11500 dataset_builder.py:79] Reading record datasets for input file: ['D:\\Vadim\\NIR\\nir\\face_detection\\wider_face\\val.record']
INFO:tensorflow:Number of filenames to read: 1
I0423 02:20:22.288058 11500 dataset_builder.py:80] Number of filenames to read: 1
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
W0423 02:20:22.288058 11500 dataset_builder.py:86] num_readers has been reduced to 1 to match input file shards.
WARNING:tensorflow:From C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\builders\dataset_builder.py:100: parallel_interleave (from tensorflow.pyth
on.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.deterministic`
.
W0423 02:20:22.291060 11500 deprecation.py:337] From C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\builders\dataset_builder.py:100: parallel_int
erleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.AUTOTUNE)` instead. If sloppy execution is desired, use `tf.data.Options.deterministic`
.
WARNING:tensorflow:From C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\builders\dataset_builder.py:235: DatasetV1.map_with_legacy_function (from
tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.map()
W0423 02:20:22.315042 11500 deprecation.py:337] From C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\builders\dataset_builder.py:235: DatasetV1.ma
p_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.map()
WARNING:tensorflow:From C:\Users\User\tfod\lib\site-packages\tensorflow\python\util\dispatch.py:1082: sparse_to_dense (from tensorflow.python.ops.sparse_ops) is deprecated and will be
removed in a future version.
Instructions for updating:
Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead.
W0423 02:20:26.543687 11500 deprecation.py:337] From C:\Users\User\tfod\lib\site-packages\tensorflow\python\util\dispatch.py:1082: sparse_to_dense (from tensorflow.python.ops.sparse_op
s) is deprecated and will be removed in a future version.
Instructions for updating:
Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead.
WARNING:tensorflow:From C:\Users\User\tfod\lib\site-packages\tensorflow\python\util\dispatch.py:1082: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed i
n a future version.
Instructions for updating:
Use `tf.cast` instead.
W0423 02:20:27.762465 11500 deprecation.py:337] From C:\Users\User\tfod\lib\site-packages\tensorflow\python\util\dispatch.py:1082: to_float (from tensorflow.python.ops.math_ops) is dep
recated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
INFO:tensorflow:Waiting for new checkpoint at D:\Vadim\NIR\nir\face_detection\resnet50\checkpoint
I0423 02:20:30.473922 11500 checkpoint_utils.py:136] Waiting for new checkpoint at D:\Vadim\NIR\nir\face_detection\resnet50\checkpoint
INFO:tensorflow:Found new checkpoint at D:\Vadim\NIR\nir\face_detection\resnet50\checkpoint\ckpt-0
I0423 02:20:30.474921 11500 checkpoint_utils.py:145] Found new checkpoint at D:\Vadim\NIR\nir\face_detection\resnet50\checkpoint\ckpt-0
C:\Users\User\tfod\lib\site-packages\keras\backend.py:450: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply p
ass a True/False value to the `training` argument of the `__call__` method of your layer or model.
  warnings.warn('`tf.keras.backend.set_learning_phase` is deprecated and '

2022-04-23 02:20:55.100622: I tensorflow/stream_executor/cuda/cuda_dnn.cc:368] Loaded cuDNN version 8200
2022-04-23 02:20:56.652293: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:56.659796: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:56.696712: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:56.705067: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:56.853532: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:56.860303: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.06GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:57.022897: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.09GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:57.028967: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.09GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:57.180462: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.15GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:57.186676: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.15GiB with freed_by_count=0. The caller
indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
2022-04-23 02:20:58.384191: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
2022-04-23 02:20:58.387247: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
2022-04-23 02:20:58.390285: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
2022-04-23 02:20:58.393312: W tensorflow/core/framework/op_kernel.cc:1733] INVALID_ARGUMENT: required broadcastable shapes
INFO:tensorflow:Encountered Graph execution error:

Detected at node 'Loss/Loss_1/logistic_loss/GreaterEqual' defined at (most recent call last):
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 114, in <module>
      tf.compat.v1.app.run()
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 312, in run
      _run_main(main, args)
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 258, in _run_main
      sys.exit(main(argv))
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 81, in main
      model_lib_v2.eval_continuously(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1159, in eval_continuously
      eager_eval_loop(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 939, in eager_eval_loop
      eval_features) = strategy.run(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 910, in compute_eval_dict
      losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 129, in _compute_losses_and_predictions_dicts
      losses_dict = model.loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\meta_architectures\ssd_meta_arch.py", line 881, in loss
      cls_losses = self._classification_loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 94, in __call__
      return self._compute_loss(prediction_tensor, target_tensor, **params)
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 412, in _compute_loss
      per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
Node: 'Loss/Loss_1/logistic_loss/GreaterEqual'
Detected at node 'Loss/Loss_1/logistic_loss/GreaterEqual' defined at (most recent call last):
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 114, in <module>
      tf.compat.v1.app.run()
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 312, in run
      _run_main(main, args)
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 258, in _run_main
      sys.exit(main(argv))
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 81, in main
      model_lib_v2.eval_continuously(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1159, in eval_continuously
      eager_eval_loop(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 939, in eager_eval_loop
      eval_features) = strategy.run(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 910, in compute_eval_dict
      losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 129, in _compute_losses_and_predictions_dicts
      losses_dict = model.loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\meta_architectures\ssd_meta_arch.py", line 881, in loss
      cls_losses = self._classification_loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 94, in __call__
      return self._compute_loss(prediction_tensor, target_tensor, **params)
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 412, in _compute_loss
      per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
Node: 'Loss/Loss_1/logistic_loss/GreaterEqual'
2 root error(s) found.
  (0) INVALID_ARGUMENT:  required broadcastable shapes
         [[{{node Loss/Loss_1/logistic_loss/GreaterEqual}}]]
         [[Identity_22/_110]]
  (1) INVALID_ARGUMENT:  required broadcastable shapes
         [[{{node Loss/Loss_1/logistic_loss/GreaterEqual}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_compute_eval_dict_15362] exception.
I0423 02:21:00.953818 11500 model_lib_v2.py:942] Encountered Graph execution error:

Detected at node 'Loss/Loss_1/logistic_loss/GreaterEqual' defined at (most recent call last):
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 114, in <module>
      tf.compat.v1.app.run()
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 312, in run
      _run_main(main, args)
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 258, in _run_main
      sys.exit(main(argv))
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 81, in main
      model_lib_v2.eval_continuously(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1159, in eval_continuously
      eager_eval_loop(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 939, in eager_eval_loop
      eval_features) = strategy.run(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 910, in compute_eval_dict
      losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 129, in _compute_losses_and_predictions_dicts
      losses_dict = model.loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\meta_architectures\ssd_meta_arch.py", line 881, in loss
      cls_losses = self._classification_loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 94, in __call__
      return self._compute_loss(prediction_tensor, target_tensor, **params)
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 412, in _compute_loss
      per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
Node: 'Loss/Loss_1/logistic_loss/GreaterEqual'
Detected at node 'Loss/Loss_1/logistic_loss/GreaterEqual' defined at (most recent call last):
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 114, in <module>
      tf.compat.v1.app.run()
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 312, in run
      _run_main(main, args)
    File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 258, in _run_main
      sys.exit(main(argv))
    File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 81, in main
      model_lib_v2.eval_continuously(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1159, in eval_continuously
      eager_eval_loop(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 939, in eager_eval_loop
      eval_features) = strategy.run(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 910, in compute_eval_dict
      losses_dict, prediction_dict = _compute_losses_and_predictions_dicts(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 129, in _compute_losses_and_predictions_dicts
      losses_dict = model.loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\meta_architectures\ssd_meta_arch.py", line 881, in loss
      cls_losses = self._classification_loss(
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 94, in __call__
      return self._compute_loss(prediction_tensor, target_tensor, **params)
    File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\losses.py", line 412, in _compute_loss
      per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
Node: 'Loss/Loss_1/logistic_loss/GreaterEqual'
2 root error(s) found.
  (0) INVALID_ARGUMENT:  required broadcastable shapes
         [[{{node Loss/Loss_1/logistic_loss/GreaterEqual}}]]
         [[Identity_22/_110]]
  (1) INVALID_ARGUMENT:  required broadcastable shapes
         [[{{node Loss/Loss_1/logistic_loss/GreaterEqual}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_compute_eval_dict_15362] exception.
INFO:tensorflow:A replica probably exhausted all examples. Skipping pending examples on other replicas.
I0423 02:21:00.956816 11500 model_lib_v2.py:943] A replica probably exhausted all examples. Skipping pending examples on other replicas.
Traceback (most recent call last):
  File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 114, in <module>
    tf.compat.v1.app.run()
  File "C:\Users\User\tfod\lib\site-packages\tensorflow\python\platform\app.py", line 36, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
  File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 312, in run
    _run_main(main, args)
  File "C:\Users\User\tfod\lib\site-packages\absl\app.py", line 258, in _run_main
    sys.exit(main(argv))
  File "D:\Vadim\NIR\nir\face_detection\models\research\object_detection\model_main_tf2.py", line 81, in main
    model_lib_v2.eval_continuously(
  File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1159, in eval_continuously
    eager_eval_loop(
  File "C:\Users\User\tfod\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\model_lib_v2.py", line 1009, in eager_eval_loop
    for evaluator in evaluators:
TypeError: 'NoneType' object is not iterable

The possible cause of error is here (losses.py from object_detection package)

  def _compute_loss(self,
                    prediction_tensor,
                    target_tensor,
                    weights,
                    class_indices=None):
    """Compute loss function.

    Args:
      prediction_tensor: A float tensor of shape [batch_size, num_anchors,
        num_classes] representing the predicted logits for each class
      target_tensor: A float tensor of shape [batch_size, num_anchors,
        num_classes] representing one-hot encoded classification targets
      weights: a float tensor of shape, either [batch_size, num_anchors,
        num_classes] or [batch_size, num_anchors, 1]. If the shape is
        [batch_size, num_anchors, 1], all the classses are equally weighted.
      class_indices: (Optional) A 1-D integer tensor of class indices.
        If provided, computes loss only for the specified class indices.

    Returns:
      loss: a float tensor of shape [batch_size, num_anchors, num_classes]
        representing the value of the loss function.
    """
    if class_indices is not None:
      weights *= tf.reshape(
          ops.indices_to_dense_vector(class_indices,
                                      tf.shape(prediction_tensor)[2]),
          [1, 1, -1])
    per_entry_cross_ent = (tf.nn.sigmoid_cross_entropy_with_logits(
        labels=target_tensor, logits=prediction_tensor))
    prediction_probabilities = tf.sigmoid(prediction_tensor)
    p_t = ((target_tensor * prediction_probabilities) +
           ((1 - target_tensor) * (1 - prediction_probabilities)))
    modulating_factor = 1.0
    if self._gamma:
      modulating_factor = tf.pow(1.0 - p_t, self._gamma)
    alpha_weight_factor = 1.0
    if self._alpha is not None:
      alpha_weight_factor = (target_tensor * self._alpha +
                             (1 - target_tensor) * (1 - self._alpha))
    focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor *
                                per_entry_cross_ent)
    return focal_cross_entropy_loss * weights

In fact, it raises here:
image
In tensorflow documentation it is said that this may happen if shapes of tensors are not the same, but if I add this into losses.py:


Surprisingly, they are equal:
image
Please, help me solving this problem, as I have not found any information about this type of problem at all.

Hi @user47,

Although the shapes may be the same, the data types of the tensors should also be compatible. Make sure the tensors have the same data type (e.g., float32, int64).

Thanks