We tried it. Here is output.
NNAPI
STARTING!
Log parameter values verbosely: [0]
Graph: [/data/local/tmp/android_segmenter_3ch.tflite]
Enable op profiling: [1]
Use NNAPI: [1]
NNAPI accelerators available: [eden-drv,nnapi-reference]
Use xnnpack: [0]
Loaded model /data/local/tmp/android_segmenter_3ch.tflite
INFO: Initialized TensorFlow Lite runtime.
NNAPI delegate created.
INFO: Created TensorFlow Lite delegate for NNAPI.
Though NNAPI delegate is explicitly applied, the model graph will not be executed by the delegate.
The input model file size (MB): 6.35428
Initialized session in 34.939ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.
count=5 first=130492 curr=111222 min=111222 max=130492 avg=116523 std=7192
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.
count=50 first=112256 curr=111087 min=110425 max=114213 avg=112533 std=778
Inference timings in us: Init: 34939, First inference: 130492, Warmup (avg): 116523, Inference (avg): 112533
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Memory footprint delta from the start of the tool (MB): init=6.70312 overall=63.4023
Profiling Info for Benchmark Initialization:
============================== Run Order ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
ModifyGraphWithDelegate 0.000 30.388 30.388 99.016% 99.016% 2216.000 1 ModifyGraphWithDelegate/0
AllocateTensors 30.284 0.298 0.151 0.984% 100.000% 0.000 2 AllocateTensors/0
============================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
ModifyGraphWithDelegate 0.000 30.388 30.388 99.016% 99.016% 2216.000 1 ModifyGraphWithDelegate/0
AllocateTensors 30.284 0.298 0.151 0.984% 100.000% 0.000 2 AllocateTensors/0
Number of nodes executed: 2
============================== Summary by node type ==============================
[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate 1 30.388 99.016% 99.016% 2216.000 1
AllocateTensors 1 0.302 0.984% 100.000% 0.000 2
Timings (microseconds): count=1 curr=30690
Memory (bytes): count=0
2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
============================== Run Order ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
PAD 0.005 0.150 0.133 0.119% 0.119% 0.000 1 [model/sequential/zero_padding2d/Pad]:0
CONV_2D 0.140 3.266 3.256 2.894% 3.013% 0.000 1 [model/re_lu/Relu;model/batch_normalization/FusedBatchNormV3;model/batch_normalization_1/FusedBatchNormV3;model/depthwise_conv2d/depthwise;model/conv2d_1/Conv2D;model/sequential/conv2d/Conv2D]:1
DEPTHWISE_CONV_2D 3.396 1.990 2.009 1.786% 4.799% 0.000 1 [model/re_lu_1/Relu;model/batch_normalization_1/FusedBatchNormV3;model/depthwise_conv2d/depthwise;model/conv2d_1/Conv2D]:2
CONV_2D 5.406 1.173 1.181 1.050% 5.849% 0.000 1 [model/batch_normalization_2/FusedBatchNormV3;model/conv2d_1/Conv2D1]:3
ADD 6.587 0.422 0.403 0.359% 6.208% 0.000 1 [model/tf.math.add/Add]:4
CONV_2D 6.991 3.037 3.078 2.737% 8.945% 0.000 1 [model/re_lu_2/Relu;model/batch_normalization_3/FusedBatchNormV3;model/batch_normalization_4/FusedBatchNormV3;model/sequential_1/depthwise_conv2d_1/depthwise;model/conv2d_2/Conv2D]:5
PAD 10.070 1.218 1.171 1.041% 9.986% 0.000 1 [model/sequential_1/zero_padding2d_1/Pad]:6
DEPTHWISE_CONV_2D 11.242 2.945 2.920 2.596% 12.582% 0.000 1 [model/re_lu_3/Relu;model/batch_normalization_4/FusedBatchNormV3;model/sequential_1/depthwise_conv2d_1/depthwise]:7
CONV_2D 14.163 1.228 1.212 1.078% 13.660% 0.000 1 [model/batch_normalization_5/FusedBatchNormV3;model/depthwise_conv2d_23/depthwise;model/conv2d_3/Conv2D1]:8
CONV_2D 15.376 1.171 1.173 1.043% 14.703% 0.000 1 [model/re_lu_4/Relu;model/batch_normalization_6/FusedBatchNormV3;model/batch_normalization_10/FusedBatchNormV3;model/sequential_2/depthwise_conv2d_3/depthwise;model/depthwise_conv2d_21/depthwise;model/conv2d_4/Conv2D]:9
DEPTHWISE_CONV_2D 16.549 2.381 2.369 2.106% 16.809% 0.000 1 [model/re_lu_5/Relu;model/batch_normalization_7/FusedBatchNormV3;model/batch_normalization_10/FusedBatchNormV3;model/sequential_2/depthwise_conv2d_3/depthwise;model/depthwise_conv2d_21/depthwise;model/depthwise_conv2d_2/depthwise]:10
CONV_2D 18.919 1.364 1.375 1.223% 18.032% 0.000 1 [model/batch_normalization_8/FusedBatchNormV3;model/depthwise_conv2d_23/depthwise;model/conv2d_5/Conv2D1]:11
ADD 20.295 0.171 0.173 0.154% 18.186% 0.000 1 [model/tf.math.add_1/Add]:12
CONV_2D 20.469 1.146 1.152 1.025% 19.210% 0.000 1 [model/re_lu_6/Relu;model/batch_normalization_9/FusedBatchNormV3;model/batch_normalization_10/FusedBatchNormV3;model/sequential_2/depthwise_conv2d_3/depthwise;model/depthwise_conv2d_21/depthwise;model/conv2d_6/Conv2D]:13
PAD 21.621 0.268 0.275 0.245% 19.455% 0.000 1 [model/sequential_2/zero_padding2d_2/Pad]:14
DEPTHWISE_CONV_2D 21.897 0.571 0.589 0.523% 19.978% 0.000 1 [model/re_lu_7/Relu;model/batch_normalization_10/FusedBatchNormV3;model/sequential_2/depthwise_conv2d_3/depthwise;model/depthwise_conv2d_21/depthwise]:15
CONV_2D 22.486 0.519 0.496 0.441% 20.419% 0.000 1 [model/batch_normalization_11/FusedBatchNormV3;model/depthwise_conv2d_19/depthwise;model/conv2d_7/Conv2D1]:16
CONV_2D 22.982 0.716 0.710 0.631% 21.050% 0.000 1 [model/re_lu_8/Relu;model/batch_normalization_12/FusedBatchNormV3;model/batch_normalization_16/FusedBatchNormV3;model/depthwise_conv2d_5/depthwise;model/conv2d_8/Conv2D]:17
DEPTHWISE_CONV_2D 23.692 0.689 0.803 0.714% 21.764% 0.000 1 [model/re_lu_9/Relu;model/batch_normalization_13/FusedBatchNormV3;model/batch_normalization_16/FusedBatchNormV3;model/depthwise_conv2d_5/depthwise;model/depthwise_conv2d_4/depthwise]:18
CONV_2D 24.496 0.792 0.796 0.707% 22.471% 0.000 1 [model/batch_normalization_14/FusedBatchNormV3;model/depthwise_conv2d_19/depthwise;model/conv2d_9/Conv2D1]:19
ADD 25.292 0.049 0.044 0.039% 22.510% 0.000 1 [model/tf.math.add_2/Add]:20
CONV_2D 25.336 0.705 0.706 0.628% 23.138% 0.000 1 [model/re_lu_10/Relu;model/batch_normalization_15/FusedBatchNormV3;model/batch_normalization_16/FusedBatchNormV3;model/depthwise_conv2d_5/depthwise;model/conv2d_10/Conv2D]:21
DEPTHWISE_CONV_2D 26.042 0.735 0.835 0.742% 23.881% 0.000 1 [model/re_lu_11/Relu;model/batch_normalization_16/FusedBatchNormV3;model/depthwise_conv2d_5/depthwise]:22
CONV_2D 26.878 0.786 0.781 0.694% 24.575% 0.000 1 [model/batch_normalization_17/FusedBatchNormV3;model/depthwise_conv2d_19/depthwise;model/conv2d_11/Conv2D1]:23
ADD 27.659 0.044 0.040 0.036% 24.611% 0.000 1 [model/tf.math.add_3/Add]:24
CONV_2D 27.700 1.350 1.347 1.198% 25.809% 0.000 1 [model/re_lu_12/Relu;model/batch_normalization_18/FusedBatchNormV3;model/batch_normalization_19/FusedBatchNormV3;model/sequential_3/depthwise_conv2d_6/depthwise;model/conv2d_12/Conv2D]:25
PAD 29.048 0.217 0.185 0.165% 25.973% 0.000 1 [model/sequential_3/zero_padding2d_3/Pad]:26
DEPTHWISE_CONV_2D 29.233 0.492 0.467 0.415% 26.389% 0.000 1 [model/re_lu_13/Relu;model/batch_normalization_19/FusedBatchNormV3;model/sequential_3/depthwise_conv2d_6/depthwise]:27
CONV_2D 29.701 0.709 0.707 0.628% 27.017% 0.000 1 [model/batch_normalization_20/FusedBatchNormV3;model/conv2d_19/Conv2D;model/conv2d_13/Conv2D1]:28
CONV_2D 30.408 0.581 0.553 0.492% 27.509% 0.000 1 [model/re_lu_14/Relu;model/batch_normalization_21/FusedBatchNormV3;model/batch_normalization_22/FusedBatchNormV3;model/depthwise_conv2d_7/depthwise;model/conv2d_14/Conv2D]:29
DEPTHWISE_CONV_2D 30.962 0.303 0.330 0.294% 27.803% 0.000 1 [model/re_lu_15/Relu;model/batch_normalization_22/FusedBatchNormV3;model/depthwise_conv2d_7/depthwise]:30
CONV_2D 31.292 0.610 0.602 0.535% 28.338% 0.000 1 [model/batch_normalization_23/FusedBatchNormV3;model/conv2d_19/Conv2D;model/conv2d_15/Conv2D1]:31
ADD 31.894 0.022 0.022 0.020% 28.358% 0.000 1 [model/tf.math.add_4/Add]:32
CONV_2D 31.917 0.509 0.514 0.457% 28.815% 0.000 1 [model/re_lu_16/Relu;model/batch_normalization_24/FusedBatchNormV3;model/batch_normalization_28/FusedBatchNormV3;model/depthwise_conv2d_9/depthwise;model/conv2d_16/Conv2D]:33
DEPTHWISE_CONV_2D 32.431 0.285 0.282 0.251% 29.065% 0.000 1 [model/re_lu_17/Relu;model/batch_normalization_25/FusedBatchNormV3;model/batch_normalization_28/FusedBatchNormV3;model/depthwise_conv2d_9/depthwise;model/depthwise_conv2d_8/depthwise]:34
CONV_2D 32.713 0.538 0.534 0.474% 29.540% 0.000 1 [model/batch_normalization_26/FusedBatchNormV3;model/conv2d_19/Conv2D;model/conv2d_17/Conv2D1]:35
ADD 33.247 0.021 0.022 0.020% 29.559% 0.000 1 [model/tf.math.add_5/Add]:36
CONV_2D 33.270 0.526 0.521 0.463% 30.022% 0.000 1 [model/re_lu_18/Relu;model/batch_normalization_27/FusedBatchNormV3;model/batch_normalization_28/FusedBatchNormV3;model/depthwise_conv2d_9/depthwise;model/conv2d_18/Conv2D]:37
DEPTHWISE_CONV_2D 33.791 0.294 0.280 0.249% 30.271% 0.000 1 [model/re_lu_19/Relu;model/batch_normalization_28/FusedBatchNormV3;model/depthwise_conv2d_9/depthwise]:38
CONV_2D 34.071 0.546 0.537 0.478% 30.749% 0.000 1 [model/batch_normalization_29/FusedBatchNormV3;model/conv2d_19/Conv2D1]:39
ADD 34.608 0.023 0.023 0.021% 30.769% 0.000 1 [model/tf.math.add_6/Add]:40
CONV_2D 34.632 1.284 1.270 1.129% 31.898% 0.000 1 [model/re_lu_20/Relu;model/batch_normalization_30/FusedBatchNormV3;model/batch_normalization_31/FusedBatchNormV3;model/depthwise_conv2d_10/depthwise;model/conv2d_20/Conv2D]:41
DEPTHWISE_CONV_2D 35.902 0.807 0.778 0.692% 32.590% 0.000 1 [model/re_lu_21/Relu;model/batch_normalization_31/FusedBatchNormV3;model/depthwise_conv2d_10/depthwise]:42
CONV_2D 36.681 1.888 2.001 1.779% 34.369% 0.000 1 [model/batch_normalization_32/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_21/Conv2D1]:43
CONV_2D 38.682 2.474 2.469 2.195% 36.564% 0.000 1 [model/re_lu_22/Relu;model/batch_normalization_33/FusedBatchNormV3;model/batch_normalization_37/FusedBatchNormV3;model/sequential_4/depthwise_conv2d_12/depthwise;model/conv2d_22/Conv2D]:44
DEPTHWISE_CONV_2D 41.152 1.040 1.117 0.993% 37.557% 0.000 1 [model/re_lu_23/Relu;model/batch_normalization_34/FusedBatchNormV3;model/batch_normalization_37/FusedBatchNormV3;model/sequential_4/depthwise_conv2d_12/depthwise;model/depthwise_conv2d_11/depthwise]:45
CONV_2D 42.269 2.785 2.827 2.513% 40.070% 0.000 1 [model/batch_normalization_35/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_23/Conv2D1]:46
ADD 45.096 0.044 0.042 0.037% 40.107% 0.000 1 [model/tf.math.add_7/Add]:47
CONV_2D 45.138 2.477 2.474 2.200% 42.307% 0.000 1 [model/re_lu_24/Relu;model/batch_normalization_36/FusedBatchNormV3;model/batch_normalization_37/FusedBatchNormV3;model/sequential_4/depthwise_conv2d_12/depthwise;model/conv2d_24/Conv2D]:48
PAD 47.612 0.204 0.184 0.164% 42.470% 0.000 1 [model/sequential_4/zero_padding2d_4/Pad]:49
DEPTHWISE_CONV_2D 47.797 0.368 0.353 0.314% 42.784% 0.000 1 [model/re_lu_25/Relu;model/batch_normalization_37/FusedBatchNormV3;model/sequential_4/depthwise_conv2d_12/depthwise]:50
CONV_2D 48.150 1.051 1.067 0.948% 43.732% 0.000 1 [model/batch_normalization_38/FusedBatchNormV3;model/conv2d_29/Conv2D;model/conv2d_25/Conv2D1]:51
CONV_2D 49.217 1.328 1.337 1.188% 44.921% 0.000 1 [model/re_lu_26/Relu;model/batch_normalization_39/FusedBatchNormV3;model/batch_normalization_43/FusedBatchNormV3;model/depthwise_conv2d_14/depthwise;model/depthwise_conv2d_15/depthwise;model/conv2d_26/Conv2D]:52
DEPTHWISE_CONV_2D 50.554 0.384 0.372 0.331% 45.252% 0.000 1 [model/re_lu_27/Relu;model/batch_normalization_40/FusedBatchNormV3;model/batch_normalization_43/FusedBatchNormV3;model/depthwise_conv2d_14/depthwise;model/depthwise_conv2d_15/depthwise;model/depthwise_conv2d_13/depthwise]:53
CONV_2D 50.927 1.452 1.465 1.303% 46.554% 0.000 1 [model/batch_normalization_41/FusedBatchNormV3;model/conv2d_29/Conv2D;model/conv2d_27/Conv2D1]:54
ADD 52.393 0.012 0.012 0.011% 46.566% 0.000 1 [model/tf.math.add_8/Add]:55
CONV_2D 52.406 1.323 1.331 1.184% 47.749% 0.000 1 [model/re_lu_28/Relu;model/batch_normalization_42/FusedBatchNormV3;model/batch_normalization_43/FusedBatchNormV3;model/depthwise_conv2d_14/depthwise;model/depthwise_conv2d_15/depthwise;model/conv2d_28/Conv2D]:56
DEPTHWISE_CONV_2D 53.737 0.361 0.353 0.314% 48.063% 0.000 1 [model/re_lu_29/Relu;model/batch_normalization_43/FusedBatchNormV3;model/depthwise_conv2d_14/depthwise;model/depthwise_conv2d_15/depthwise]:57
CONV_2D 54.091 1.415 1.429 1.270% 49.333% 0.000 1 [model/batch_normalization_44/FusedBatchNormV3;model/conv2d_29/Conv2D1]:58
ADD 55.520 0.012 0.011 0.010% 49.343% 0.000 1 [model/tf.math.add_9/Add]:59
CONV_2D 55.531 1.328 1.328 1.181% 50.524% 0.000 1 [model/re_lu_30/Relu;model/batch_normalization_45/FusedBatchNormV3;model/batch_normalization_43/FusedBatchNormV3;model/depthwise_conv2d_14/depthwise;model/depthwise_conv2d_15/depthwise;model/conv2d_30/Conv2D]:60
DEPTHWISE_CONV_2D 56.860 0.357 0.356 0.317% 50.840% 0.000 1 [model/depthwise_conv2d_15/depthwise1]:61
CONV_2D 57.216 1.030 1.011 0.899% 51.740% 0.000 1 [model/re_lu_31/Relu;model/batch_normalization_46/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_31/Conv2D]:62
RESIZE_NEAREST_NEIGHBOR 58.228 0.019 0.018 0.016% 51.755% 0.000 1 [model/up_sampling2d/resize/ResizeNearestNeighbor]:63
DEPTHWISE_CONV_2D 58.246 0.191 0.191 0.170% 51.925% 0.000 1 [model/depthwise_conv2d_16/depthwise1]:64
CONV_2D 58.438 0.472 0.458 0.407% 52.333% 0.000 1 [model/re_lu_32/Relu;model/batch_normalization_47/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_32/Conv2D]:65
DEPTHWISE_CONV_2D 58.896 0.177 0.191 0.170% 52.503% 0.000 1 [model/depthwise_conv2d_17/depthwise1]:66
CONV_2D 59.087 0.439 0.454 0.403% 52.906% 0.000 1 [model/re_lu_33/Relu;model/batch_normalization_48/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_33/Conv2D]:67
ADD 59.541 0.031 0.030 0.027% 52.933% 0.000 1 [model/tf.math.add_10/Add]:68
RESIZE_NEAREST_NEIGHBOR 59.572 0.061 0.061 0.055% 52.988% 0.000 1 [model/up_sampling2d_1/resize/ResizeNearestNeighbor]:69
DEPTHWISE_CONV_2D 59.633 0.797 0.785 0.698% 53.686% 0.000 1 [model/depthwise_conv2d_18/depthwise1]:70
CONV_2D 60.419 1.807 1.794 1.595% 55.281% 0.000 1 [model/re_lu_34/Relu;model/batch_normalization_49/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_34/Conv2D]:71
DEPTHWISE_CONV_2D 62.213 0.368 0.355 0.316% 55.596% 0.000 1 [model/depthwise_conv2d_19/depthwise2]:72
CONV_2D 62.569 0.665 0.653 0.580% 56.177% 0.000 1 [model/re_lu_35/Relu;model/batch_normalization_50/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_35/Conv2D]:73
ADD 63.222 0.110 0.109 0.097% 56.274% 0.000 1 [model/tf.math.add_11/Add]:74
DEPTHWISE_CONV_2D 63.332 0.673 0.788 0.701% 56.975% 0.000 1 [model/depthwise_conv2d_20/depthwise2]:75
CONV_2D 64.120 1.168 1.169 1.039% 58.014% 0.000 1 [model/re_lu_36/Relu;model/batch_normalization_51/FusedBatchNormV3;model/batch_normalization_10/FusedBatchNormV3;model/sequential_2/depthwise_conv2d_3/depthwise;model/depthwise_conv2d_21/depthwise;model/conv2d_36/Conv2D]:76
RESIZE_NEAREST_NEIGHBOR 65.290 0.335 0.318 0.283% 58.297% 0.000 1 [model/up_sampling2d_2/resize/ResizeNearestNeighbor]:77
DEPTHWISE_CONV_2D 65.609 2.184 2.158 1.919% 60.216% 0.000 1 [model/depthwise_conv2d_21/depthwise1]:78
CONV_2D 67.767 2.271 2.284 2.031% 62.247% 0.000 1 [model/re_lu_37/Relu;model/batch_normalization_52/FusedBatchNormV3;model/depthwise_conv2d_22/depthwise;model/conv2d_37/Conv2D]:79
RESIZE_NEAREST_NEIGHBOR 70.052 0.735 0.738 0.656% 62.903% 0.000 1 [model/up_sampling2d_3/resize/ResizeNearestNeighbor]:80
DEPTHWISE_CONV_2D 70.791 6.391 6.568 5.840% 68.742% 0.000 1 [model/depthwise_conv2d_22/depthwise2]:81
CONV_2D 77.361 3.830 3.837 3.412% 72.154% 0.000 1 [model/re_lu_38/Relu;model/batch_normalization_53/FusedBatchNormV3;model/depthwise_conv2d_23/depthwise;model/conv2d_38/Conv2D]:82
RESIZE_NEAREST_NEIGHBOR 81.199 1.524 1.534 1.364% 73.518% 0.000 1 [model/up_sampling2d_4/resize/ResizeNearestNeighbor]:83
DEPTHWISE_CONV_2D 82.734 17.310 17.460 15.523% 89.041% 0.000 1 [model/depthwise_conv2d_23/depthwise2]:84
CONV_2D 100.196 5.083 5.117 4.549% 93.590% 0.000 1 [model/conv2d_39/BiasAdd;model/conv2d_39/Conv2D;conv2d_39/bias1]:85
SOFTMAX 105.314 7.563 7.210 6.410% 100.000% 0.000 1 [StatefulPartitionedCall:0]:86
============================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
DEPTHWISE_CONV_2D 82.734 17.310 17.460 15.523% 15.523% 0.000 1 [model/depthwise_conv2d_23/depthwise2]:84
SOFTMAX 105.314 7.563 7.210 6.410% 21.933% 0.000 1 [StatefulPartitionedCall:0]:86
DEPTHWISE_CONV_2D 70.791 6.391 6.568 5.840% 27.772% 0.000 1 [model/depthwise_conv2d_22/depthwise2]:81
CONV_2D 100.196 5.083 5.117 4.549% 32.322% 0.000 1 [model/conv2d_39/BiasAdd;model/conv2d_39/Conv2D;conv2d_39/bias1]:85
CONV_2D 77.361 3.830 3.837 3.412% 35.733% 0.000 1 [model/re_lu_38/Relu;model/batch_normalization_53/FusedBatchNormV3;model/depthwise_conv2d_23/depthwise;model/conv2d_38/Conv2D]:82
CONV_2D 0.140 3.266 3.256 2.894% 38.628% 0.000 1 [model/re_lu/Relu;model/batch_normalization/FusedBatchNormV3;model/batch_normalization_1/FusedBatchNormV3;model/depthwise_conv2d/depthwise;model/conv2d_1/Conv2D;model/sequential/conv2d/Conv2D]:1
CONV_2D 6.991 3.037 3.078 2.737% 41.364% 0.000 1 [model/re_lu_2/Relu;model/batch_normalization_3/FusedBatchNormV3;model/batch_normalization_4/FusedBatchNormV3;model/sequential_1/depthwise_conv2d_1/depthwise;model/conv2d_2/Conv2D]:5
DEPTHWISE_CONV_2D 11.242 2.945 2.920 2.596% 43.961% 0.000 1 [model/re_lu_3/Relu;model/batch_normalization_4/FusedBatchNormV3;model/sequential_1/depthwise_conv2d_1/depthwise]:7
CONV_2D 42.269 2.785 2.827 2.513% 46.474% 0.000 1 [model/batch_normalization_35/FusedBatchNormV3;model/depthwise_conv2d_20/depthwise;model/conv2d_23/Conv2D1]:46
CONV_2D 45.138 2.477 2.474 2.200% 48.673% 0.000 1 [model/re_lu_24/Relu;model/batch_normalization_36/FusedBatchNormV3;model/batch_normalization_37/FusedBatchNormV3;model/sequential_4/depthwise_conv2d_12/depthwise;model/conv2d_24/Conv2D]:48
Number of nodes executed: 87
============================== Summary by node type ==============================
[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
CONV_2D 40 56.985 50.682% 50.682% 0.000 40
DEPTHWISE_CONV_2D 24 42.700 37.977% 88.659% 0.000 24
SOFTMAX 1 7.209 6.412% 95.070% 0.000 1
RESIZE_NEAREST_NEIGHBOR 5 2.667 2.372% 97.442% 0.000 5
PAD 5 1.948 1.733% 99.175% 0.000 5
ADD 12 0.928 0.825% 100.000% 0.000 12
Timings (microseconds): count=50 first=112190 curr=111029 min=110364 max=114134 avg=112478 std=778
Memory (bytes): count=0
87 nodes observed
GPU
GPU
STARTING!
Log parameter values verbosely: [0]
Graph: [/data/local/tmp/android_segmenter_3ch.tflite]
Enable op profiling: [1]
Use gpu: [1]
Loaded model /data/local/tmp/android_segmenter_3ch.tflite
INFO: Initialized TensorFlow Lite runtime.
INFO: Created TensorFlow Lite delegate for GPU.
GPU delegate created.
INFO: Replacing 87 node(s) with delegate (TfLiteGpuDelegateV2) node, yielding 1 partitions.
INFO: Initialized OpenCL-based API.
Explicitly applied GPU delegate, and the model graph will be completely executed by the delegate.
The input model file size (MB): 6.35428
Initialized session in 493.147ms.
INFO: Created 1 GPU delegate kernels.
Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.
count=31 first=49690 curr=16335 min=12114 max=49690 avg=15935.1 std=6269
Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.
count=59 first=16829 curr=16825 min=15340 max=18993 avg=16181.1 std=539
Inference timings in us: Init: 493147, First inference: 49690, Warmup (avg): 15935.1, Inference (avg): 16181.1
Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Memory footprint delta from the start of the tool (MB): init=105.855 overall=114.68
Profiling Info for Benchmark Initialization:
============================== Run Order ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
ModifyGraphWithDelegate 0.000 488.305 488.305 99.987% 99.987% 104548.000 1 ModifyGraphWithDelegate/0
AllocateTensors 488.283 0.061 0.031 0.013% 100.000% 0.000 2 AllocateTensors/0
============================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
ModifyGraphWithDelegate 0.000 488.305 488.305 99.987% 99.987% 104548.000 1 ModifyGraphWithDelegate/0
AllocateTensors 488.283 0.061 0.031 0.013% 100.000% 0.000 2 AllocateTensors/0
Number of nodes executed: 2
============================== Summary by node type ==============================
[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate 1 488.305 99.987% 99.987% 104548.000 1
AllocateTensors 1 0.062 0.013% 100.000% 0.000 2
Timings (microseconds): count=1 curr=488367
Memory (bytes): count=0
2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
============================== Run Order ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
TfLiteGpuDelegateV2 0.032 16.734 16.100 100.000% 100.000% 0.000 1 [StatefulPartitionedCall:0]:87
============================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%] [mem KB] [times called] [Name]
TfLiteGpuDelegateV2 0.032 16.734 16.100 100.000% 100.000% 0.000 1 [StatefulPartitionedCall:0]:87
Number of nodes executed: 1
============================== Summary by node type ==============================
[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
TfLiteGpuDelegateV2 1 16.100 100.000% 100.000% 0.000 1
Timings (microseconds): count=59 first=16734 curr=16749 min=15261 max=18911 avg=16100.1 std=540
Memory (bytes): count=0
1 nodes observed