Thank you for you reply.
I tried changing the dimensions to 1024x25 but got the error like ‘minimum height should be 33’.
Then I changed the dimensions to 1024x33 and got the following error.
ValueError: Dimensions must be equal, but are 4 and 3 for '{{node ssd_mobile_net_v2_fpn_keras_feature_extractor/FeatureMaps/top_down/add}} = AddV2[T=DT_FLOAT](ssd_mobile_net_v2_fpn_keras_feature_extractor/FeatureMaps/top_down/nearest_neighbor_upsampling/nearest_neighbor_upsampling/Reshape_1, ssd_mobile_net_v2_fpn_keras_feature_extractor/FeatureMaps/top_down/projection_2/BiasAdd)' with input shapes: [16,4,64,128], [16,3,64,128].
Call arguments received:
• image_features=[("'layer_7'", 'tf.Tensor(shape=(16, 5, 128, 32), dtype=float32)'), ("'layer_14'", 'tf.Tensor(shape=(16, 3, 64, 96), dtype=float32)'), ("'layer_19'", 'tf.Tensor(shape=(16, 2, 32, 1280), dtype=float32)')]
Call arguments received:
• inputs=tf.Tensor(shape=(16, 33, 1024, 3), dtype=float32)
• kwargs={'training': 'False'}
Given below is my pipeline.config file
# SSD with Mobilenet v2 FPN-lite (go/fpn-lite) feature extractor, shared box
# predictor and focal loss (a mobile version of Retinanet).
# Retinanet: see Lin et al, https://arxiv.org/abs/1708.02002
# Trained on COCO, initialized from Imagenet classification checkpoint
# Train on TPU-8
#
# Achieves 22.2 mAP on COCO17 Val
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 2
}
}
image_resizer {
fixed_shape_resizer {
height: 33
width: 1024
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 128
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
num_layers_before_predictor: 4
share_prediction_tower: true
use_depthwise: true
kernel_size: 3
}
}
feature_extractor {
type: 'ssd_mobilenet_v2_fpn_keras'
use_depthwise: true
fpn {
min_level: 3
max_level: 7
additional_layer_depth: 128
}
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.997,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "/content/models/mymodel/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8/checkpoint/ckpt-0"
fine_tune_checkpoint_type: "detection"
batch_size: 16
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 100
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .08
total_steps: 50000
warmup_learning_rate: .026666
warmup_steps: 1000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
label_map_path: "/content/labelmap.pbtxt"
tf_record_input_reader {
input_path: "/content/train.tfrecord"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval_input_reader: {
label_map_path: "/content/labelmap.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "/content/val.tfrecord"
}
}
Is it possible to use this image dimensions for training this model or do I have to make further changes in the config file?