ValueError: Exception encountered when calling layer ‘preprocessing’ (type KerasLayer).
A KerasTensor is symbolic: it’s a placeholder for a shape an a dtype. It doesn’t have any actual numerical value. You cannot convert it to a NumPy array.
Call arguments received by layer ‘preprocessing’ (type KerasLayer):
• inputs=
• training=None
Hi @Aarushi_Vadhavkar, Could you please provide the sample code to reproduce the issue. Thank You.
import tensorflow_hub as hub
import tensorflow_text as text
import tensorflow as tf
preprocessor = hub.KerasLayer(“TensorFlow | bert | Kaggle”)
encoder = hub.KerasLayer(“TensorFlow | bert | Kaggle”)
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name=‘text’)
preprocessed_text = preprocessor(text_input)
outputs = encoder(preprocessed_text)
l = tf.keras.layers.Dropout(0.1, name=“dropout”)(outputs[‘pooled_output’])
l = tf.keras.layers.Dense(1, activation=‘sigmoid’, name=“output”)(l)
model = tf.keras.Model(inputs=[text_input], outputs = [l])
model.summary()
1 Like