InvalidArgumentError: required broadcastable shapes [Op:SquaredDifference]

Hi,
I have created a multi-output, multi-step time-series model from the tensorflow time-series window generator example at URL Time series forecasting | TensorFlow Core but I keep getting errors on the loss function and metric function. You will see that I am using “MeanSquaredError” as per recommendation from Google Bard and extensive research. I am using Python 3.8 and Tensorflow 2.10.

My feature engineering, model build, and model training scripts are below, and I have provided comments to help myself and others understand what I am trying to accomplish. All help and advice are welcomed. I added multiple successive loss functions from a solution that I found on another website tensorflow - How the MSE loss calculated for multiple neurons in output layer - Stack Overflow , and make some sense as there are multiple sets of prediction values it still did not work and Google Bard, suggested directly naming the labels (y_true) but with additional question, how would the model know to properly map the “y_true” values with the “y_pred” values?

I was able to confirm the output shape of the model by running
sample_input = np.random.rand(90, 30, 315)
sample_output = CNN_Multi_LSTM_model.predict(sample_input)
print(sample_output.shape)

3/3 [==============================] - 5s 30ms/step
(90, 4, 315)

code:

Num_of_features = 315
OUT_STEPS = 4
INPUT_STEPS = 30

weather_df_multi_window = WindowGenerator(input_width = INPUT_STEPS,
label_width = OUT_STEPS,
shift = OUT_STEPS,
train_df = train_weather_df,
val_df = validation_weather_df,
test_df = test_weather_df,
label_columns=[‘daily_weather_morning’, ‘daily_weather_afternoon’, ‘daily_weather_evening’, ‘daily_weather_night’])

output of feature and label shapes after processed with the window generator

#Inputs shape (batch, time, features): (90, 30, 315)
#Labels shape (batch, time, features): (90, 4, 4)

MAX_EPOCHS = 300

method does the following:

monitor the validation loss

compile using tf.losses.MeanAbsolutePercentageError()

fit the model with the training dataset, epochs, validation dataset and callback method

def compile_and_fit(model, window, patience=60):
early_stopping = tf.keras.callbacks.EarlyStopping(monitor=‘val_loss’,
patience=patience,
mode=‘min’)

Get the y_true values

y_true = window.example[1]

Reshape the y_true argument

#y_true = tf.reshape(y_true, (y_pred.shape[0], y_pred.shape[1], y_pred.shape[2]))

model.compile(loss=[tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError(),tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError()],
optimizer=tf.keras.optimizers.Adam(),
metrics=[tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError(),tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError()],
run_eagerly=True)

history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,
callbacks=[early_stopping])
return history

Add a CNN layer

cnn_layer = tf.keras.layers.Conv1D(filters=32, kernel_size=(INPUT_STEPS,), activation=‘relu’)

Build the Multi-Stacked LSTM model

CNN_Multi_LSTM_model = tf.keras.models.Sequential([
cnn_layer,
tf.keras.layers.LSTM(128, activation=‘tanh’, return_sequences=True),
tf.keras.layers.LSTM(64, activation=‘tanh’, return_sequences=True),
tf.keras.layers.LSTM(32, activation=‘tanh’),
tf.keras.layers.Dense(OUT_STEPS*num_of_features,kernel_initializer=tf.initializers.zeros(), kernel_regularizer=tf.keras.regularizers.l2(0.001)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Reshape([OUT_STEPS, num_of_features])
])

history = compile_and_fit(CNN_Multi_LSTM_model, weather_df_multi_window)

The error being generated is as follows:
InvalidArgumentError Traceback (most recent call last)
Cell In[92], line 1
----> 1 history = compile_and_fit(CNN_Multi_LSTM_model, weather_df_multi_window)

Cell In[90], line 29, in compile_and_fit(model, window, patience)
21 # Reshape the y_true argument
22 #y_true = tf.reshape(y_true, (y_pred.shape[0], y_pred.shape[1], y_pred.shape[2]))
24 model.compile(loss=[tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError(),tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError()],
25 optimizer=tf.keras.optimizers.Adam(),
26 metrics=[tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError(),tf.keras.losses.MeanSquaredError(), tf.keras.losses.MeanSquaredError()],
27 run_eagerly=True)
—> 29 history = model.fit(window.train, epochs=MAX_EPOCHS,
30 validation_data=window.val,
31 callbacks=[early_stopping])
32 return history

File ~\anaconda3\envs\tf_210_gpu\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 # tf.debugging.disable_traceback_filtering()
—> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb

File ~\anaconda3\envs\tf_210_gpu\lib\site-packages\keras\losses.py:1486, in mean_squared_error(y_true, y_pred)
1484 y_pred = tf.convert_to_tensor(y_pred)
1485 y_true = tf.cast(y_true, y_pred.dtype)
→ 1486 return backend.mean(tf.math.squared_difference(y_pred, y_true), axis=-1)

InvalidArgumentError: {{function_node _wrapped__SquaredDifference_device/job:localhost/replica:0/task:0/device:GPU:0}} required broadcastable shapes [Op:SquaredDifference]

I was able to resolve my own issue with a lot of research. Basically, anytime an error occurs that states “required broadcastable shapes” in tensorflow, this is basically saying that the y_true shape and the y_pred shape does not match.

I was able to replicate the issue with the code below, I have provided comments for anyone reading:

import tensorflow as tf

Define a simple model

model = tf.keras.Sequential([
tf.keras.layers.Dense(10, input_shape=(30, 315)),
tf.keras.layers.Dense(4)
])

Get the output shape of the model

output_shape = model.output_shape
print(f"Output shape of the model: {output_shape}")

Define some dummy data

x = tf.random.normal((90, 30, 315))
y_true = tf.random.normal((90,4,4))

Compute the model’s predictions

y_pred = model(x)

Check the shapes of y_true and y_pred

print(f"Shape of y_true: {y_true.shape}“)
print(f"Shape of y_pred: {y_pred.shape}”)

Compute the mean squared error between y_true and y_pred

mse = tf.keras.losses.mean_squared_error(y_true, y_pred)
print(f"Mean squared error: {mse}")

To resolve this issue, you will need to reshape the output shape of model, because the output shape of the model will be your shape for your y_pred. This need to be the last layer of your model and you can see in the code below. You also need to flatten or lower the dimensionality of you input. This can be done several ways, either by use of tensorflow Lamda layer or using tensorflow flatten layer, make sure this is done before the dense layer and output. I also learning that CNN and LSTM layers require multiple dimension layers so always add the flatten layer after those layer, before your dense layer or output layer. I hope this helps someone like it did me.

import tensorflow as tf

Define a simple model

model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(30, 315)),
tf.keras.layers.Dense(16),
tf.keras.layers.Reshape([4, 4])
])

Get the output shape of the model

output_shape = model.output_shape
print(f"Output shape of the model: {output_shape}")

Define some dummy data

x = tf.random.normal((90, 30, 315))
y_true = tf.random.normal((90,4,4))

Compute the model’s predictions

y_pred = model(x)

Check the shapes of y_true and y_pred

print(f"Shape of y_true: {y_true.shape}“)
print(f"Shape of y_pred: {y_pred.shape}”)

Compute the mean squared error between y_true and y_pred

mse = tf.keras.losses.mean_squared_error(y_true, y_pred)
print(f"Mean squared error: {mse}")

1 Like