InvalidArgumentError: Cannot assign a device for operation

I encountered an error while executing the code on the site below.

keras-io/examples/vision/image_captioning.py at master · keras-team/keras-io · GitHub

And i am using tensorflow version 2.6 (tensorflow-metal PluggableDevice) in m1 mac.
I can’t find a history of the same issue in m1 mac, so I leave an inquiry. Please help me.

I executed the code below.

# Fit the model
caption_model.fit(
    train_dataset,
    epochs=EPOCHS,
    validation_data=valid_dataset,
    callbacks=[early_stopping],
)

The error below occurs.


---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
/var/folders/bs/5zylmdxn5pg233sn6f3tkj0w0000gn/T/ipykernel_4580/3281984782.py in <module>
     36 
     37 # Fit the model
---> 38 caption_model.fit(
     39     train_dataset,
     40     epochs=EPOCHS,

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1182                 _r=1):
   1183               callbacks.on_train_batch_begin(step)
-> 1184               tmp_logs = self.train_function(iterator)
   1185               if data_handler.should_sync:
   1186                 context.async_wait()

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    883 
    884       with OptionalXlaContext(self._jit_compile):
--> 885         result = self._call(*args, **kwds)
    886 
    887       new_tracing_count = self.experimental_get_tracing_count()

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    948         # Lifting succeeded, so variables are initialized and we can run the
    949         # stateless function.
--> 950         return self._stateless_fn(*args, **kwds)
    951     else:
    952       _, _, _, filtered_flat_args = \

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
   3037       (graph_function,
   3038        filtered_flat_args) = self._maybe_define_function(args, kwargs)
-> 3039     return graph_function._call_flat(
   3040         filtered_flat_args, captured_inputs=graph_function.captured_inputs)  # pylint: disable=protected-access
   3041 

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
   1961         and executing_eagerly):
   1962       # No tape is watching; skip to running the function.
-> 1963       return self._build_call_outputs(self._inference_function.call(
   1964           ctx, args, cancellation_manager=cancellation_manager))
   1965     forward_backward = self._select_forward_and_backward_functions(

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/function.py in call(self, ctx, args, cancellation_manager)
    589       with _InterpolateFunctionError(self):
    590         if cancellation_manager is None:
--> 591           outputs = execute.execute(
    592               str(self.signature.name),
    593               num_outputs=self._num_outputs,

~/miniforge3/envs/image_captioning_tf26/lib/python3.9/site-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     57   try:
     58     ctx.ensure_initialized()
---> 59     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
     60                                         inputs, attrs, num_outputs)
     61   except core._NotOkStatusException as e:

InvalidArgumentError: Cannot assign a device for operation sequential/random_flip/stateful_uniform_full_int/RngReadAndSkip: Could not satisfy explicit device specification '' because the node {{colocation_node sequential/random_flip/stateful_uniform_full_int/RngReadAndSkip}} was colocated with a group of nodes that required incompatible device '/job:localhost/replica:0/task:0/device:GPU:0'. All available devices [/job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:GPU:0]. 
Colocation Debug Info:
Colocation group had the following types and supported devices: 
Root Member(assigned_device_name_index_=2 requested_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' assigned_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' resource_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' supported_device_types_=[CPU] possible_devices_=[]
RngReadAndSkip: CPU 
_Arg: GPU CPU 

Colocation members, user-requested devices, and framework assigned devices, if any:
  sequential_random_flip_stateful_uniform_full_int_rngreadandskip_resource (_Arg)  framework assigned device=/job:localhost/replica:0/task:0/device:GPU:0
  sequential/random_flip/stateful_uniform_full_int/RngReadAndSkip (RngReadAndSkip) 

	 [[{{node sequential/random_flip/stateful_uniform_full_int/RngReadAndSkip}}]] [Op:__inference_train_function_98057]

I suggest you to post this at:

@yooduoda Hi, I’m running into the same issue on my M1 Pro MacBook. Did you figure out what the issue was?

Hi! I’m having the same problem. Could you solve the issue?

Any updates on this? I am facing the same issue on Macbook Pro 16 with M1 Pro