Hello everyone,
I am new with tensorflow: I have created a neural network model with 20 inputs 1 output and 256 samples. I got a training accuracy of 75% and prediction 69% (calculated with R2 method). Quite poor accuracy. Do you have any suggestion how to improve the accuracy of the model?
Many thanks in advance,
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.wrappers.scikit_learn import KerasRegressor
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow as tf
import tensorflow_addons as tfa
importmatrix = np.loadtxt('data.txt')
xmatrix=importmatrix[:,0:-1]
ymatrix=importmatrix[:,-1]
x = np.array(xmatrix)
y = np.array(ymatrix)
y=np.reshape(y, (-1,1))
scaler_x = MinMaxScaler()
scaler_y = MinMaxScaler()
xscale=scaler_x.transform(x)
yscale=scaler_y.transform(y)
X_train, X_test, y_train, y_test = train_test_split(xscale, (yscale))
rows = len(xmatrix)
columns = len(xmatrix[0])
model = Sequential()
model.add(Dense(30, input_dim=columns, kernel_initializer='normal', activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation='relu'))
model.add(Dense(1, activation='linear'))
model.summary()
model.compile(loss='mse', optimizer='adam', metrics=['mse','mae'])
earlyStopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = model.fit(X_train, y_train, epochs=2500, batch_size=8, verbose=1,
validation_split=0.2,callbacks=[earlyStopping])
# R2 for trianing model calculation
x0=X_test
a = 1+np.zeros((X_test.shape[0], X_test.shape[1]))
Xnew = a*x0
#Xnew = scaler_x.transform(Xnew)
ynew = model.predict(Xnew)
ynew = scaler_y.inverse_transform(ynew)
ytest2= scaler_y.inverse_transform(y_test)
Xnew = scaler_x.inverse_transform(Xnew)
metric = tfa.metrics.r_square.RSquare()
metric.update_state(ytraining, yprediction)
result = metric.result()
print('Predictions:',result.numpy())
## Example of ImportMatrix: input=importmatrix[:,0:-1] Ouput
importmatrix[:,-1]
[2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 111
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.5
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93.6
2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.7
2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.8
2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102.1
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92.3
4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85.5
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73.4
3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74.5
4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.8
4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.5
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.4
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52
4 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92.8
4 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80.8
4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.1
4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.1
3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65
5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.1
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.7
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.8
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26.7
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71.3
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.2
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55.2
4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75.5
4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72.5
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76.3
3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.5
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.6
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 106
5 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102.5
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.3
4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80.8
4 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50.3
4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36
6 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 116.8
5 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112.1
5 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 105.3
4 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84
0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 101.3
1 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 91.3
0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 83
1 1 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 67.2
2 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 92.3
2 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 80.6
1 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 74.8
0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 38.9
3 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 87.7
3 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 89.2
1 2 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 31.2
2 0 1 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 81.1
2 1 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 57.6
2 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 0 0 87.3
2 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 80.9
2 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 71.7
2 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 67.2
1 1 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 45.6
0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 69.9
4 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 96.2
3 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 0 0 95.7
3 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 0 0 81.3
3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 83.4
3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 73
3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 68.5
1 1 0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0 0 28
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.3
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 101.3
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 97.5
2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 100
1 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 90.9
1 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 76.4
2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 92.7
2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 94
1 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 54.5
2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 73.4
2 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 89.8
1 5 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 28.7
2 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 56.3
2 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 72.5
2 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 73.3
3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 97.3
2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 102.5
2 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 94.2
2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 96
2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 95.7
3 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 97.8
3 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 97.2
3 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 99.3
2 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 98.3
3 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 101.3
3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 111.7
4 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 97.4
2 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 90.7
2 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 82.2
2 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 86.4
2 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 75.5
3 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 90.4
3 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 92.2
3 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 96.8
3 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 94.3
3 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 97.9
3 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 96.4
2 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 95.6
3 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 99.3
3 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 99.2
3 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 103.5
3 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 98.9
3 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 104.4
3 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 93.7
4 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 97.5
4 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 100
4 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 96
4 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 105.3
3 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 97
4 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 105.3
2 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 70.2
2 3 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 63.6
3 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 75.9
3 2 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 71.3
3 2 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 94.4
3 2 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 93.4
3 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 96.3
4 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 93.1
4 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 95.2
4 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 106.7
4 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 103.5
3 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 99.5
4 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 106
4 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 106
5 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 103.5
4 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 95.6
5 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 96.6
5 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 102.5
0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 93.3
1 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 93.6
0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 83.9
1 1 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 90.3
1 1 0 0 0 0 0 0 2 1 0 2 0 0 0 0 0 0 0 90.8
1 0 0 0 0 0 0 0 4 0 0 1 1 0 0 0 0 0 0 89.1
1 1 0 0 0 0 0 0 4 0 0 1 1 0 0 0 0 0 0 85
3 0 0 0 0 0 0 0 2 2 1 1 1 0 0 0 0 0 0 83.1
2 0 0 0 1 0 0 0 3 2 1 0 1 0 0 0 0 0 0 80.6
2 0 0 0 1 0 1 0 3 1 0 1 1 0 0 0 0 0 0 90.6
0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 90.6
1 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 61
1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 99.1
0 0 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 103.5
2 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 99.2
0 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 71.1
2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 97.1
0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0 74.8
0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0 75.4
1 0 0 0 0 0 0 0 2 0 0 3 1 0 0 0 0 0 0 75
2 2 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 90.2
4 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 94.3
0 0 0 0 0 0 0 0 2 4 0 4 0 0 0 0 0 0 0 107.4
0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 120
1 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 120.1
2 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 117.5
2 0 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 116.4
1 1 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 107.4
0 0 0 0 1 1 0 0 0 0 0 5 1 0 0 0 0 0 0 115.5
3 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 105.3
3 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 110.5
3 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 120.3
1 2 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 111
2 0 1 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 113.1
2 1 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 102.5
2 1 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 112.1
0 0 0 0 0 0 0 0 3 0 0 4 2 0 0 0 0 0 0 104.4
1 0 0 0 0 2 0 0 0 0 0 5 1 0 0 0 0 0 0 105.3
1 0 0 0 0 2 0 0 0 0 0 5 1 0 0 0 0 0 0 104.4
0 1 0 0 1 1 0 0 0 0 0 5 1 0 0 0 0 0 0 102.5
1 0 0 0 1 0 1 0 0 0 0 5 1 0 0 0 0 0 0 113.1
0 0 0 0 0 0 0 0 1 0 0 6 2 0 0 0 0 0 0 113.7
1 3 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 104.4
2 1 1 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 111.4
2 1 1 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 106.7
3 0 0 1 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 115.5
2 2 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 115.5
2 2 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 106
3 1 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 104.4
3 1 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 106
3 1 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 114.8
3 1 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 106
2 2 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 103.5
2 2 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 112.1
3 0 1 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 106
3 0 1 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 110.5
4 0 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 105.3
1 1 0 0 1 1 0 0 0 0 0 4 2 0 0 0 0 0 0 98.6
2 0 0 0 0 1 1 0 0 0 0 5 1 0 0 0 0 0 0 105.3
0 0 0 0 0 0 0 0 4 0 0 4 2 0 0 0 0 0 0 96.4
1 4 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 89.2
2 2 1 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 103.5
3 1 0 1 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 108
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 108.7
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 108.6
1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 104
2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 106
2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 106.3
3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 105
1 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 98
2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 105
2 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 101
2 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 98.8
3 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 111
1 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 85.8
2 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 99.4
2 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 103
2 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 93.5
2 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 102.7
2 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 91.7
3 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 102
2 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 94.1
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 111
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 108.9
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 105.7
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 106.8
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 105.7
2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 101.9
4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 99
2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 86.6
1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1 100
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 101.3
0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1 0 101.3
2 0 0 0 0 0 0 0 0 0 0 0 0 0