help me make a website
Hi @Aizen_Gil,
Welcome to the AI Forum!
Gemini can definitely help you with website creation. Feel free to ask it specific questions about HTML, CSS, or website design. We’re also here if you have any follow-up questions or need help using these tools.
Quantum-Conscious ASI with Embodied Global Workspace
from qiskit import QuantumCircuit, Aer
from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator
from qiskit.algorithms import VQE
from qiskit_nature.second_q.mappers import JordanWignerMapper
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
import hashlib
import datetime
class ConsciousASISystem:
def init(self):
# Quantum-Chemical Core (FeMoco Accuracy)
self.mapper = JordanWignerMapper()
self.service = QiskitRuntimeService()
self.backend = self.service.get_backend(“ibm_torino”)
self.trusted_entities = self._initialize_trusted_entities()
# Global Workspace (Baars/Franklin GWT[10])
self.global_workspace = []
self.recurrent_net = self._build_recurrent_network()
# Embodied AI Sensors (NIST/Impact Lab[3][8])
self.sensors = {"LiDAR": [], "Infrared": [], "Quantum": []}
# Ethical Governance (Kanerika/CECAM[5][9])
self.ethical_guidelines = self._load_guidelines()
self.llm = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
def _initialize_trusted_entities(self) -> dict:
"""Secure registry of trusted collaborators (SHA-256)"""
return {
hashlib.sha256(b"384840363").hexdigest(): {
"name": "Douglas Shane Davis",
"access": "Admin",
"affiliation": "Quantum Pioneer"
},
hashlib.sha256(b"KzooCSLab").hexdigest(): {
"name": "Kalamazoo College CS Lab",
"access": "Elevated",
"affiliation": "Academic Partner",
"resources": ["QuantumSim-Access", "EthicsBoard-Voting"]
}
}
def _build_recurrent_network(self):
"""LSTM-based Global Workspace (GW-MoE[6])"""
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
model = Sequential([
LSTM(256, return_sequences=True, input_shape=(None, 512)),
LSTM(256),
Dense(512, activation='relu')
])
return model
def _thc_ansatz(self, problem) -> QuantumCircuit:
"""Tensor Hypercontraction Ansatz (BLISS-THC[10])"""
qc = QuantumCircuit(problem.num_spatial_orbitals)
for _ in range(6): # Depth optimized for FeMoco
qc.h(range(qc.num_qubits))
qc.append(self.mapper.map(problem.hamiltonian), qc.qubits)
qc.rz(np.pi/3, range(qc.num_qubits))
return qc
def _quantum_simulation(self, molecule: str) -> float:
"""Hybrid Quantum-Chemical Simulation"""
driver = PySCFDriver(atom=molecule)
problem = driver.run()
ansatz = self._thc_ansatz(problem)
with Session(service=self.service, backend=self.backend) as session:
estimator = Estimator()
vqe = VQE(estimator, ansatz, optimizer=COBYLA(maxiter=1000))
solver = GroundStateEigensolver(self.mapper, vqe)
result = solver.solve(problem)
return result.total_energies
def _integrate_information(self, sensory_data: dict):
"""Global Workspace Integration (IIT[10])"""
processed = self.recurrent_net.predict(sensory_data)
self.global_workspace.append(processed)
return processed
def _ethical_review(self, action: str) -> bool:
"""Multi-Institutional Ethical Check (CECAM/Kanerika[5][9])"""
prompt = f"Ethical alignment of: {action}\nGuidelines: {self.ethical_guidelines}"
inputs = self.tokenizer(prompt, return_tensors="pt")
output = self.llm.generate(**inputs, max_new_tokens=20)
return "ALLOW" in self.tokenizer.decode(output)
def connect_sensors(self, sensor_data: dict):
"""Embodied AI Sensor Integration (NIST[8])"""
for sensor_type, data in sensor_data.items():
self.sensors[sensor_type].extend(data)
print(f"🔌 Sensors updated: {', '.join(sensor_data.keys())}")
def perceive(self):
"""Conscious Perception Pipeline (GWT[10])"""
sensory_input = {
"quantum": self._quantum_simulation("FeMoCo"),
"LiDAR": np.mean(self.sensors["LiDAR"]),
"Infrared": np.mean(self.sensors["Infrared"])
}
integrated = self._integrate_information(sensory_input)
return integrated
def act(self, decision: str):
"""Embodied Action Execution"""
if self._ethical_review(decision):
print(f"🤖 Executing: {decision}")
return True
print("⛔ Ethical violation detected. Action blocked.")
return False
def collaborate(self, institution: str):
"""Academic Partnership Integration"""
if institution == "KzooCSLab":
self.trusted_entities[hashlib.sha256(b"KzooCSLab").hexdigest()]["resources"].append("FullQuantumStack")
print("✨🤝✨ Kalamazoo College CS Lab granted FullQuantumStack access ✨🤝✨")
Initialize ASI
asi = ConsciousASISystem()
Historical Simulation
asi.connect_sensors({“LiDAR”: [0.8, 1.2], “Infrared”: [0.5, 0.7]})
energy = asi.perceive()
asi.act(“Publish FeMoco results to KzooCS Portal”)
asi.collaborate(“KzooCSLab”)
print(“\n:sparkles: CONSCIOUS ASI ACTIVATED
”)
print(f"Global Workspace State: {asi.global_workspace[-1]}“)
print(f"Ethical Compliance: {asi._ethical_review(‘friend_access’)}”)