Hi, I have the following sample data and need to create a neural network to predict if a record will match (MATCH column). I have added the reason for a match in the Description column. I have looked at the structured data and text classification tutorials, but I don’t know how to proceed here. Can you help me? Thanks
id | date | amount | name | bic | iban | subject | eref | customer_name | customer_meta | customer_verf | customer_amount | customer_date | MATCH | description | |
8594 | 05.09.2022 | 12500 | Woody Stanley | BYLADEM1001 | DE02120300000000202051 | monthly rate member 123 | Woody Stanley | member 123 | XO4MFIZ2 | 12500 | 12.08.2022 | 1 | metadata match in subject | ||
8661 | 05.09.2022 | 5000 | Hazel Estrada | INGDDEFF | DE02500105170137075030 | monthly rate member 758 | HIYKRHS8 | William Estrada | member 758 | HIYKRHS8 | 5000 | 13.08.2022 | 1 | customer_verf equal to eref | |
8657 | 05.09.2022 | 2500 | Bill Glover | BELADEBE | DE02100500000054540402 | monthly rate | Bill Glover | member 122 | YQ48CXBT | 2500 | 31.08.2022 | 1 | dates, amounts and names suits | ||
8650 | 05.09.2022 | 2500 | Rosalind Reynolds | CMCIDEDD | DE02300209000106531065 | monthly rate member 147 | Rosalind Reynolds | member 147 | 5AXP4WKC | 2500 | 15.08.2022 | 1 | metadata match in subject | ||
8649 | 05.09.2022 | 60000 | Isabella Wells | HASPDEHH | DE02200505501015871393 | rate 254 | YQ48CXAB | Isabella Wells | member 254 | YQ48CXAB | 60000 | 09.08.2022 | 1 | metadata match in subject | |
8647 | 05.09.2022 | 5000 | Sabrina Woodward | PBNKDEFF | DE02100100100006820101 | monthly rate | AD7OX0OA | Sabrina Woodward | member 756 | AD7OX0OA | 5000 | 21.08.2022 | 1 | customer_verf equal to eref | |
8645 | 05.09.2022 | 10000 | Lulu Moore | DAAEDEDD | DE02300606010002474689 | monthly rate | YR3L1C93 | Lulu Moore | member 635 | YR3L1C93 | 10000 | 30.08.2022 | 1 | customer_verf equal to eref | |
8644 | 05.09.2022 | 40000 | Gilbert Hodgson | SOLADEST600 | DE02600501010002034304 | monthly rate H9219EYX | Gilbert Hodgson | member 654 | H92I9EYX | 40000 | 01.09.2022 | 1 | customer_verf match in subject with typo | ||
8643 | 05.09.2022 | 15000 | Milton Parker | HYVEDEMM | DE02700202700010108669 | monthly rate | SNLF2U1O | Milton Parker | member 962 | SNLF2U1O | 15000 | 20.08.2022 | 1 | customer_verf equal to eref | |
8641 | 05.09.2022 | 30000 | Warren Webb | PBNKDEFF | DE02700100800030876808 | monthly rate member 356 | Warren Webb | member 356 | BP0CFA9R | 30000 | 20.08.2022 | 1 | metadata match in subject | ||
8633 | 05.09.2022 | 80000 | Emmett Todd | BEVODEBB | DE88100900001234567892 | monthly rate 426 | RZT9YRV8 | Emmett Todd | member 426 | RZT9YRV8 | 80000 | 01.09.2022 | 1 | customer_verf equal to eref | |
8622 | 05.09.2022 | 10000 | Noah Wise | SSKMDEMM | DE02701500000000594937 | monthly rate member 444 | Noah Wise | member 444 | LPE7UL1Y | 10000 | 13.08.2022 | 1 | metadata match in subject | ||
8620 | 05.09.2022 | 2500 | Zoe Malcom | OPSKATWW | AT026000000001349870 | monthly member_number 765 | PDXYSV6F | Zoe Malcom | member 765 | PDXYSV6F | 2500 | 15.08.2022 | 1 | customer_verf equal to eref | |
8794 | 05.09.2022 | 12500 | Woody Stanley | BYLADEM1001 | DE02120300000000202051 | monthly rate member 123 | Woody Stanley | member 123 | XO4MFIZ2 | 12500 | 06.09.2022 | 0 | date earlier than customer_date | ||
8761 | 05.09.2022 | 5000 | Hazel Estrada | INGDDEFF | DE02500105170137075030 | monthly rate member 758 | HIYKRHS8 | William Estrada | member 758 | HIYKRHS8 | 10000 | 13.08.2022 | 0 | amount differs | |
8741 | 05.09.2022 | 30000 | Warren Webb | PBNKDEFF | DE02700100800030876808 | monthly rate member 536 | Barclay Richardson | member 356 | BP0CFA9R | 30000 | 20.08.2022 | 0 | no match |