Hello!
I want to convert a TensorFlow model downloaded from kaggle to TensorFlow Lite format for embedded devices. Embedded devices only accept models with fixed shapes, and I want to fix the shape to None(-1). Currently, I am trying to fix the batch_size of the following biggan model.
How can I make the shape fixed?
One idea I tried was to use “onnxruntime.tools.make_dynamic_shape_fixed” provided by ONNX, but conversion to ONNX also failed with the following message:
### create conda environment
$ conda create -n biggan_convert python=3.10
$ conda activate biggan_convert
$ pip install tensorflow==2.9 tf_keras==2.14.1 numpy==1.26.4 onnx onnxruntime onnx2tf==1.26.9 onnx_graphsurgeon psutil sng4onnx tf2onnx==1.13.0
$ conda install six
$ conda install requests
### download model from kaggle
$ curl -L -o ~/Downloads/model.tar.gz\
https://www.kaggle.com/api/v1/models/deepmind/biggan/tensorFlow1/128/2/download
### expand
$ mkdir saved_model
$ tar zxvf ~/Downloads/model.tar.gz -C saved_model
$ ls saved_model/
saved_model.pb tfhub_module.pb variables
### model input and output
$ saved_model_cli show --dir ./saved_model --all
2025-04-01 17:23:14.550812: I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-04-01 17:23:14.552998: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda/lib64:
2025-04-01 17:23:14.553009: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
MetaGraphDef with tag-set: '' contains the following SignatureDefs:
signature_def['default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['truncation'] tensor_info:
dtype: DT_FLOAT
shape: ()
name: truncation:0
inputs['y'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1000)
name: y:0
inputs['z'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 120)
name: z:0
The given SavedModel SignatureDef contains the following output(s):
outputs['default'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 128, 128, 3)
name: G_trunc_output:0
Method name is:
### convert to onnx
$ python3 -m tf2onnx.convert --saved-model saved_model --output biggan
.onnx
...
RuntimeError: MetaGraphDef associated with tags 'serve' could not be found in SavedModel, with available tags '[set()]'. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`.