import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_splitDataset=pd.read_csv(‘train.csv’)
Dataset_droped = Dataset.drop([“PassengerId”, “Name”, “Ticket”], axis=1)
Dataset_one_hot = pd.get_dummies(Dataset_droped)X = Dataset_one_hot.drop([“Survived”], axis=1)
y = Dataset_one_hot[“Survived”]
X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.2,
random_state=42)tf.random.set_seed(42)
model_10 = tf.keras.Sequential([
tf.keras.layers.Dense(10),
tf.keras.layers.Dense(10),
tf.keras.layers.Dense(1)
])model_10.compile(loss=tf.keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
metrics=[‘accuracy’])history_10 = model_10.fit(X_train, y_train, epochs=10)
model_10.predict(X_test)
And then the prediction show nan. Is there a problem with this code?