Hi,
For a science fair project, I am using transfer learning for Resnet 50. I am having some issues loading it, so I tried downloading basic Resnet50 with random weights (though I plan on trying image weights later).
The code I’m running is:
base_cnn = ResNet50()
My output is as follows
8192/102967424 […] - ETA: 0s
16384/102967424 […] - ETA: 10:01
24576/102967424 […] - ETA: 11:22
32768/102967424 […] - ETA: 12:50
40960/102967424 […] - ETA: 13:47
49152/102967424 […] - ETA: 14:22
57344/102967424 […] - ETA: 14:48
65536/102967424 […] - ETA: 15:08
73728/102967424 […] - ETA: 15:24
81920/102967424 […] - ETA: 15:36
450560/102967424 […] - ETA: 3:05
598016/102967424 […] - ETA: 2:27
712704/102967424 […] - ETA: 2:11
860160/102967424 […] - ETA: 1:54
868352/102967424 […] - ETA: 2:00
876544/102967424 […] - ETA: 2:07
884736/102967424 […] - ETA: 2:14
892928/102967424 […] - ETA: 2:22
901120/102967424 […] - ETA: 2:30
909312/102967424 […] - ETA: 2:40
917504/102967424 […] - ETA: 2:51
925696/102967424 […] - ETA: 3:05
933888/102967424 […] - ETA: 3:19
942080/102967424 […] - ETA: 3:36
950272/102967424 […] - ETA: 3:53
958464/102967424 […] - ETA: 4:13
966656/102967424 […] - ETA: 4:35
974848/102967424 […] - ETA: 4:59
983040/102967424 […] - ETA: 5:26
991232/102967424 […] - ETA: 5:56
999424/102967424 […] - ETA: 6:28
1007616/102967424 […] - ETA: 7:02
1015808/102967424 […] - ETA: 7:41
This is being run on IDLE 3.10.1, and the time stamps are increasing very rapidly and IDLE lags very quickly following this. The laptop is not the issue; I have a Macbook Pro from 2 years ago. I have udpated tensorflow as well. Some reason resnet installs very quickly on google colab but I can’t use this as google colab doesn’t seem to be able to handle my training data images very well (which in comparison works better on IDLE).
Any immediate help is greatly appreciated,
Best,
Arnav