Hi,
I’ve encountered a discrepancy when calculating KL Divergence using TensorFlow’s tf.keras.metrics.KLDivergence
metric compared to a manual calculation.
Here’s a summary of what I’ve observed:
-
Manual Calculation:
import tensorflow as tf import numpy as np true_probs = np.array([0.7]) predicted_probs = np.array([0.5]) true_probs_tf = tf.convert_to_tensor(true_probs, dtype=tf.float32) predicted_probs_tf = tf.convert_to_tensor(predicted_probs, dtype=tf.float32) epsilon = 1e-10 p = tf.clip_by_value(true_probs_tf, epsilon, 1.0 - epsilon) q = tf.clip_by_value(predicted_probs_tf, epsilon, 1.0 - epsilon) kl_divergence_manual = tf.reduce_sum(p * tf.math.log(p / q) + (1 - p) * tf.math.log((1 - p) / (1 - q))) print("KL Divergence (Manual TensorFlow calculation with stability):", kl_divergence_manual.numpy())
Results in:
0.082282856
-
TensorFlow Metric:
kl_divergence_metric = tf.keras.metrics.KLDivergence() kl_divergence_metric.update_state(true_probs_tf, predicted_probs_tf) kl_divergence = kl_divergence_metric.result().numpy() print("KL Divergence (TensorFlow metric):", kl_divergence)
Results in:
0.23553054
The manual calculation differs from TensorFlow’s metric result. Could you help me understand why this discrepancy occurs? Is there a special handling or implementation detail in TensorFlow’s KLDivergence
metric?
Thank you!