I am hitting some error involving XLA and data.
This is a reproducible short test:
data = tf.data.Dataset.from_tensor_slices(list(range(10)))
data = data.repeat()
iterator = iter(data)
@tf.function(jit_compile=False)
def run(it):
t = 0
for _ in range(10):
x = next(it)
t += x
return t
@tf.function(jit_compile=True)
def run_compiled(it):
t = 0
for _ in range(10):
x = next(it)
t += x
return t
print(run(iterator))
print(run_compiled(iterator))
Basically the non-compiled version (run) works fine, while the compiled one (run_compiled) is returning the following error:
tensorflow.python.framework.errors_impl.InternalError: Failed copying input tensor from /job:localhost/replica:0/task:0/device:CPU:0 to /job:localhost/replica:0/task:0/device:GPU:0 in order to run __inference_run_compiled_61: No unary variant device copy function found for direction: 1 and Variant type_index: tensorflow::ResourceDeleter [Op:__inference_run_compiled_61]
I am in the following tf version: 2.7.0-dev20210806
Any idea on what is going on?
Thanks!