Hi everyone,
I recently bought a new laptop with an RTX 5050 GPU. I installed Ubuntu 24.04.2 LTS and then installed the NVIDIA drivers from the official website. Here’s what I see in nvidia-smi
:
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 575.64.03 Driver Version: 575.64.03 CUDA Version: 12.9 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 5050 ... Off | 00000000:01:00.0 Off | N/A |
| N/A 39C P0 9W / 42W | 15MiB / 8151MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 2964 G /usr/lib/xorg/Xorg 4MiB |
+-----------------------------------------------------------------------------------------+
Then, I created a virtual environment and ran python3 -m pip install 'tensorflow[and-cuda]
.
TensorFlow installs and detects my GPU:
tf.config.list_physical_devices('GPU')
W0000 00:00:1752022359.118443 5335 gpu_device.cc:2430] TensorFlow was not built with CUDA kernel binaries compatible with compute capability 12.0. CUDA kernels will be jit-compiled from PTX, which could take 30 minutes or longer.
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
But when I try to run any model or even a simple operation, I get this error
raise core._status_to_exception(e) from None # pylint: disable=protected-access
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
tensorflow.python.framework.errors_impl.InternalError: {{function_node __wrapped__Mul_device_/job:localhost/replica:0/task:0/device:GPU:0}} 'cuLaunchKernel(function, gridX, gridY, gridZ, blockX, blockY, blockZ, 0, reinterpret_cast<CUstream>(stream), params, nullptr)' failed with 'CUDA_ERROR_INVALID_HANDLE' [Op:Mul] name:
I’ve tried multiple TensorFlow versions. Version 2.16 doesn’t see the GPU. Only 2.19 detects the GPU, but I get that CUDA_ERROR_INVALID_HANDLE
error. I suspect that full support for RTX 50xx series might not be available yet.
So:
- Is there a known fix or workaround for this issue?
- Should I just wait for TensorFlow 2.20? If so, does anyone know when it’s expected to be released?
I’d really appreciate any advice or a clear step-by-step guide to help me get this working.
Thanks in advance!