Convert CSV to a TFRecord

Hallo,
I want to convert my CSV file to a TFRecord file, and I have placed the generate_tfrecord.py file in the research/object_detection directory. My CSV file is located in the research/object_detection/data directory. When I run the command python generate_tfrecord.py --csv_input=data/wdj_train.csv --output_path=data/wdj_train.record in the Anaconda command prompt, I receive the following error message.

usage: generetor_tfrecord.py [-h]
generate_tfrecord.py: error: unrecognized arguments: --csv_input=data/wdj_train.csv --output_path=data/wdj_train.record

This is my code.

# -*- coding: utf-8 -*-
"""
Created on Tue Jan 16 01:04:55 2018

@author: Xiang Guo
"""

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generetor_tfrecord.py --csv_input=data/wdj_train.csv  --output_path=data/wdj_train.record
  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
"""



import os
import io
import pandas as pd
import tensorflow as tf
import argparse


from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

os.chdir('C:\\Users\\yunpeng\\PycharmProjects\\TF2\\models\\research\\object_detection')
parser = argparse.ArgumentParser()
flags = parser.parse_args()

flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'wdj':
        return 1
    else:
        None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'images')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    main()

How can I resolve it?

Hi @yunpeng_huo, To convert CSV to a TF record, from csv extract the values as array using csv.values then using tf.io.TFRecordWriter you can create the TF records. Please refer to this gist for working code example.