AttributeError build weighted fed avg

please anyone help me, i am stuck at this code, I have tried to read release notes related to below version which i have installed on google colab but till not found any solution
TensorFlow version: 2.15.0
TensorFlow Federated version: 0.75.0
Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]

—my code is here:

```import tensorflow as tf
import tensorflow_federated as tff

# Assuming you have preprocessed X and y from your own dataset
# Load your preprocessed data here
X, y, vocab_size, max_length = load_and_preprocess_data()  # Load your preprocessed data

# Define the model architecture
def create_lstm_model():
    model = tf.keras.Sequential([
        tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_sequence_length),
        tf.keras.layers.LSTM(64),
        tf.keras.layers.Dense(vocab_size, activation='softmax')
    ])
    return tff.learning.from_keras_model(
        keras_model=model,
        input_spec=(tf.TensorSpec(shape=(None, max_sequence_length), dtype=tf.int32), tf.TensorSpec(shape=(None,), dtype=tf.int32)),
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]
    )

# Build federated averaging process
federated_averaging_process = tff.learning.build_weighted_fed_avg(
    model_fn=create_lstm_model,
    client_optimizer_fn=lambda: tf.keras.optimizers.Adam(learning_rate=0.01),
    server_optimizer_fn=lambda: tf.keras.optimizers.Adam(learning_rate=0.01)
)

# Initialize federated state
state = federated_averaging_process.initialize()

# Federated training loop
NUM_ROUNDS = 20
for round_num in range(NUM_ROUNDS):
    state, metrics = federated_averaging_process.next(state, federated_data)
    print(f'Round {round_num}: {metrics}')

**AttributeError: module 'tensorflow_federated.python.learning' has no attribute 'build_weighted_fed_avg'**

Hi @ATI_MALIK, I think the build_weighted_fed_avg was present in tff.learning.algorithms.build_weighted_fed_avg . Could please try this. Thank You