I got an issue when trying to port two of my currently using bounding box augmen…t related functions [resize_and_crop_bboxes](https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/coco/data.py#L23) and [bboxes_apply_affine](https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/coco/data.py#L45). I think we better set a default expecting bbox input format. For my usage, the corner bounding box is in same format with `tfds COCO`, that I think is `[top, left, bottom, right]` with value in range `[0, 1]`.
```py
import tensorflow_datasets as tfds
ds, info = tfds.load('coco/2017', with_info=True)
aa = ds['train'].as_numpy_iterator().next()
print(aa['image'].shape)
# (462, 640, 3)
print(aa['objects'])
# {'area': array([17821, 16942, 4344]),
# 'bbox': array([[0.54380953, 0.13464062, 0.98651516, 0.33742186],
# [0.50707793, 0.517875 , 0.8044805 , 0.891125 ],
# [0.3264935 , 0.36971876, 0.65203464, 0.4431875 ]], dtype=float32),
# 'id': array([152282, 155195, 185150]),
# 'is_crowd': array([False, False, False]),
# 'label': array([3, 3, 0])}
imm = aa['image']
plt.imshow(imm)
for bb in aa["objects"]["bbox"]:
bb = np.array([bb[0] * imm.shape[0], bb[1] * imm.shape[1], bb[2] * imm.shape[0], bb[3] * imm.shape[1]])
plt.plot(bb[[1, 1, 3, 3, 1]], bb[[0, 2, 2, 0, 0]])
```
![Figure_1](https://user-images.githubusercontent.com/5744524/158770180-07732b02-261b-41d8-a674-81cc909a17da.png)
It will save some effort checking format if we can set a standard. So my questions are:
- Currently in [bounding_box.py](https://github.com/keras-team/keras-cv/tree/master/keras_cv/utils/bounding_box.py), we are assuming it's `LEFT, TOP, RIGHT, BOTTOM`. Are we gonna set this as default?
- Is value range expecting in `[0, 1]` or scaled with image actual shape?