how do I add a transformer layer to this below code. I am finding difficulties finding the right parameters. I have many lstm layers put in. I want lstm + transformer and check the performance
You can use the tf.keras.layers.MultiHeadAttention layer and choose parameters (i.e.num_heads and key_dim) as per your use case
Here is the example code to use MultiHeadAttention layer with num_heads=4 and key_dim=32
# Reshape output for transformer
model.add(tf.keras.layers.Reshape((-1, 128)))
# Adjust the parameters as needed
model.add(tf.keras.layers.MultiHeadAttention(num_heads=4, key_dim=32))
Sorry for the confusion. You can use the functional API as shown below
# Define the input shape
input_shape = (win_length, num_features)
inputs = tf.keras.Input(shape=input_shape)
x = tf.keras.layers.LSTM(128, return_sequences=True)(inputs)
x = tf.keras.layers.LeakyReLU(alpha=0.5)(x)
x = tf.keras.layers.LSTM(128, return_sequences=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.5)(x)
x = tf.keras.layers.Dropout(0.3)(x)
x = tf.keras.layers.RepeatVector(win_length)(x)
x = tf.keras.layers.LSTM(128, return_sequences=True)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.5)(x)
x = tf.keras.layers.LSTM(128, return_sequences=False)(x)
x = tf.keras.layers.LeakyReLU(alpha=0.5)(x)
x = tf.keras.layers.Dropout(0.3)(x)
# MultiHeadAttention layer
attention_layer = tf.keras.layers.MultiHeadAttention(num_heads=2, key_dim=128)
x = tf.reshape(x, (-1, 1, 2))
x = attention_layer(x, x, x)
outputs = tf.keras.layers.Dense(1)(x)
# Create the model
model = tf.keras.Model(inputs=inputs, outputs=outputs)